21 research outputs found

    Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP

    Get PDF
    We previously carried out a genome-wide association study of generalized vitiligo (GV) in non-Hispanic whites, identifying 13 confirmed susceptibility loci. In this study, we re-analyzed the genome-wide data set (comprising 1,392 cases and 2,629 controls) to specifically test association of all 33 GV candidate genes that have previously been suggested for GV, followed by meta-analysis incorporating both current and previously published data. We detected association of three of the candidate genes tested: TSLP (rs764916, P3.0E-04, odds ratio (OR)1.60; meta-P for rs38069333.1E-03), XBP1 (rs6005863, P3.6E-04, OR1.17; meta-P for rs22695779.5E-09), and FOXP3 (rs11798415, P5.8E-04, OR1.19). Association of GV with CTLA4 (rs12992492, P5.9E-05, OR1.20; meta-P for rs2317751.0E-04) seems to be secondary to epidemiological association with other concomitant autoimmune diseases. Within the major histocompatibility complex (MHC), at 6p21.33, association with TAP1-PSMB8 (rs3819721, P5.2E-06) seems to derive from linkage disequilibrium with major primary signals in the MHC class I and class II regions

    Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset

    Get PDF
    Generalized vitiligo is a common autoimmune disease in which acquired patchy depigmentation of skin, hair, and mucous membranes results from loss of melanocytes from involved areas. Previous genetic analyses have focused on vitiligo susceptibility, and have identified a number of genes involved in disease risk. Age of onset of generalized vitiligo also involves a substantial genetic component, but has not previously been studied systematically. In this study, we report a genome-wide association study of vitiligo age of onset in 1,339 generalized vitiligo patients, with replication in an independent cohort of 677 cases. We identified a quantitative trait locus for vitiligo age of onset in the major histocompatibility complex (MHC) class II region, located near c6orf10-BTNL2 (rs7758128; P=8.14 Ă— 10(-11)), a region that is also associated with generalized vitiligo susceptibility. In contrast, there was no association of vitiligo age of onset with any other MHC or non-MHC loci that are associated with vitiligo susceptibility. These findings highlight the differing roles played by genes involved in vitiligo susceptibility versus vitiligo age of onset, and illustrate that genome-wide analyses can be used to identify genes involved in quantitative aspects of disease natural history, as well as disease susceptibility per se

    Exposure to melamine and its derivatives and aromatic amines among pregnant women in the United States: The ECHO Program.

    No full text
    BackgroundMelamine, melamine derivatives, and aromatic amines are nitrogen-containing compounds with known toxicity and widespread commercial uses. Nevertheless, biomonitoring of these chemicals is lacking, particularly during pregnancy, a period of increased susceptibility to adverse health effects.ObjectivesWe aimed to measure melamine, melamine derivatives, and aromatic amine exposure in pregnant women across the United States (U.S.) and evaluate associations with participant and urine sample collection characteristics.MethodsWe measured 43 analytes, representing 45 chemicals (i.e., melamine, three melamine derivatives, and 41 aromatic amines), in urine from pregnant women in nine diverse ECHO cohorts during 2008-2020 (N = 171). To assess relations with participant and urine sample collection characteristics, we used generalized estimating equations to estimate prevalence ratios (PRs) for analytes dichotomized at the detection limit, % differences (%Δ) for continuous analytes, and 95% confidence intervals. Multivariable models included age, race/ethnicity, marital status, urinary cotinine, and year of sample collection.ResultsTwelve chemicals were detected in >60% of samples, with near ubiquitous detection of cyanuric acid, melamine, aniline, 4,4'-methylenedianiline, and a composite of o-toluidine and m-toluidine (99-100%). In multivariable adjusted models, most chemicals were associated with higher exposures among Hispanic and non-Hispanic Black participants. For example, concentrations of 3,4-dichloroaniline were higher among Hispanic (%Δ: +149, 95% CI: +17, +431) and non-Hispanic Black (%Δ: +136, 95% CI: +35, +311) women compared with non-Hispanic White women. We observed similar results for ammelide, o-/m-toluidine, 4,4'-methylenedianiline, and 4-chloroaniline. Most chemicals were positively associated with urinary cotinine, with strongest associations observed for o-/m-toluidine (%Δ: +23; 95% CI: +16, +31) and 3,4-dichloroaniline (%Δ: +25; 95% CI: +17, +33). Some chemicals exhibited annual trends (e.g., %Δ in melamine per year: -11; 95% CI: -19, -1) or time of day, seasonal, and geographic variability.DiscussionExposure to melamine, cyanuric acid, and some aromatic amines was ubiquitous in this first investigation of these analytes in pregnant women. Future research should expand biomonitoring, identify sources of exposure disparities by race/ethnicity, and evaluate potential adverse health effects

    Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults

    No full text
    The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38–alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands

    Characterizing changes in behaviors associated with chemical exposures during the COVID-19 pandemic.

    No full text
    The COVID-19 pandemic-and its associated restrictions-have changed many behaviors that can influence environmental exposures including chemicals found in commercial products, packaging and those resulting from pollution. The pandemic also constitutes a stressful life event, leading to symptoms of acute traumatic stress. Data indicate that the combination of environmental exposure and psychological stress jointly contribute to adverse child health outcomes. Within the Environmental influences on Child Health Outcomes (ECHO)-wide Cohort, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether there were pandemic-related changes in behavior that may be associated with environmental exposures. A total of 1535 participants from nine cohorts completed a survey via RedCap from December 2020 through May 2021. The questionnaire identified behavioral changes associated with the COVID-19 pandemic in expected directions, providing evidence of construct validity. Behavior changes reported by at least a quarter of the respondents include eating less fast food and using fewer ultra-processed foods, hair products, and cosmetics. At least a quarter of respondents reported eating more home cooked meals and using more antibacterial soaps, liquid soaps, hand sanitizers, antibacterial and bleach cleaners. Most frequent predictors of behavior change included Hispanic ethnicity and older age (35 years and older). Respondents experiencing greater COVID-related stress altered their behaviors more than those not reporting stress. These findings highlight that behavior change associated with the pandemic, and pandemic-related psychological stress often co-occur. Thus, prevention strategies and campaigns that limit environmental exposures, support stress reduction, and facilitate behavioral change may lead to the largest health benefits in the context of a pandemic. Analyzing biomarker data in these participants will be helpful to determine if behavior changes reported associate with measured changes in exposure

    Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children’s Environmental Health Studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group

    No full text
    BACKGROUND: Characterization of the epigenome is a primary interest for children’s environmental health researchers studying the environmental influences on human populations, particularly those studying the role of pregnancy and early-life exposures on later-in-life health outcomes. OBJECTIVES: Our objective was to consider the state of the science in environmental epigenetics research and to focus on DNA methylation and the collective observations of many studies being conducted within the Children’s Environmental Health and Disease Prevention Research Centers, as they relate to the Developmental Origins of Health and Disease (DOHaD) hypothesis. METHODS: We address the current laboratory and statistical tools available for epigenetic analyses, discuss methods for validation and interpretation of findings, particularly when magnitudes of effect are small, question the functional relevance of findings, and discuss the future for environmental epigenetics research. DISCUSSION: A common finding in environmental epigenetic studies is the small-magnitude epigenetic effect sizes that result from such exposures. Although it is reasonable and necessary that we question the relevance of such small effects, we present examples in which small effects persist and have been replicated across populations and across time. We encourage a critical discourse on the interpretation of such small changes and further research on their functional relevance for children’s health. CONCLUSION: The dynamic nature of the epigenome will require an emphasis on future longitudinal studies in which the epigenome is profiled over time, over changing environmental exposures, and over generations to better understand the multiple ways in which the epigenome may respond to environmental stimuli. CITATION: Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, Yousefi P, Perera F, Joubert BR, Wiemels J, Taylor M, Yang IV, Chen R, Hew KM, Freeland DM, Miller R, Murphy SK. 2017. Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: the Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect 125:–526; http://dx.doi.org/10.1289/EHP59
    corecore