104 research outputs found

    The effect of calorie restriction on insulin signaling in skeletal muscle and adipose tissue of Ames dwarf mice

    Get PDF
    Long-living Ames dwarf (df/df) mice are homozygous for a mutation of the Prop1(df) gene. As a result, mice are deficient in growth hormone (GH), prolactin (PRL) and thyrotropin (TSH). In spite of the hormonal deficiencies, df/df mice live significantly longer and healthier lives compared to their wild type siblings. We studied the effects of calorie restriction (CR) on the expression of insulin signaling genes in skeletal muscle and adipose tissue of normal and df/df mice. The analysis of genes expression showed that CR differentially affects the insulin signaling pathway in these insulin target organs. Moreover, results obtained in both normal and Ames dwarf mice indicate more direct effects of CR on insulin signaling genes in adipose tissue than in skeletal muscle. Interestingly, CR reduced the protein levels of adiponectin in the epididymal adipose tissue of normal and Ames dwarf mice, while elevating adiponectin levels in skeletal muscle and plasma of normal mice only. In conclusion, our findings suggest that both skeletal muscle and adipose tissue are important mediators of insulin effects on longevity. Additionally, the results revealed divergent effects of CR on expression of genes in the insulin signaling pathway of normal and Ames dwarf mice

    Losses of Both Products of the Cdkn2a/Arf Locus Contribute to Asbestos-Induced Mesothelioma Development and Cooperate to Accelerate Tumorigenesis

    Get PDF
    The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1 alpha or 1 beta, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/-) and Arf(+/-) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/-) and Arf(+/-) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/-) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/-) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis

    Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action.</p> <p>Methods</p> <p>In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines.</p> <p>Results</p> <p>Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling.</p> <p>Conclusions</p> <p>These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment.</p

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity &gt; 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10&nbsp;years; 78.2% included were male with a median age of 37&nbsp;years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Atp13A3 And Caveolin-1 As Potential Biomarkers For Difluoromethylornithine-Based Therapies In Pancreatic Cancers

    No full text
    The purpose of this paper was to better understand the role of polyamine transport in pancreatic cancers.This paper identifies potential biomarkers for assessing the relative tumor commitment to polyamine biosynthesis or transport. Cell lines with low polyamine import activity and low ATP13A3 protein levels appear committed to polyamine biosynthesis and required high concentrations of the polyamine biosynthesis inhibitor, difluoromethylornithine (DFMO) to inhibit their growth (e.g., AsPC-1 and Capan 1). In contrast, cell lines with high polyamine import activity and high ATP13A3 protein expression (e.g., L3.6pl) demonstrated a commitment to polyamine transport and required lower DFMO concentrations to inhibit their growth. Pancreatic cancer cell lines which were most sensitive to DFMO also gave the highest EC50 values for the polyamine transport inhibitors (PTIs) tested indicating that more PTI was needed to inhibit the active polyamine transport systems of these cell lines. Most significant is that the combination therapy of DFMO+PTI was efficacious against both cell types with the PTI showing low efficacy in cell lines with low polyamine transport activity and high efficacy in cell lines with high polyamine transport activity. High ATP13A3 protein expression and moderate to low Cav-1 protein expression was shown to be predictive of tumors which effectively escape DFMO via polyamine import. In summary, this report demonstrates for the first time the role of ATP13A3 in polyamine transport and its use as a potential biomarker along with Cav-1 to select tumors most susceptible to DFMO. These findings may help stratify patients in the ongoing clinical trials with DFMO-based therapies and help predict tumor response

    Abstract A30: Chronic inflammation induces severe stromal damage and early pancreatic tumors in mice with activated Akt1 and KRas

    Full text link
    Abstract Inflammation and the immune environment is implicated as a risk for pancreatic ductal adenocarcinoma (PDAC), especially in chronic conditions. However, a mechanistic link is unknown. Recently, radiotherapy followed by immune checkpoint inhibitors are being tested and show promising results, thereby introducing immune modulation as a new investigational area for the treatment of pancreatic cancer. A potential barrier is that pancreatic fibrosis and desmoplastic reactivity are common characteristics of PDAC and makes therapeutic delivery difficult. To define how inflammation and desmoplasia effects the immune-pancreatic stromal environment and progression of PDAC, we have chronically injected caerulein into genetically engineered mice that we previously showed spontaneously develop PDAC through the cooperation of mutant active Akt1 and KRas. We show that injected Akt1Myr/KRasG12D mice have increased tissue remodeling, stellate cell activation, collagen production, and mucin production when compared to KRasG12D mice. They also have increased ductal proliferation, accelerated tumor formation, and increased immune cell infiltration in the pancreas ducts and stroma compared to control PBS- and caerulein-injected KRasG12D mice. Pro-inflammatory cytokines and macrophages likely activate stellate cells, which in turn facilitate additional cytokines to enhance a pro-tumor immune environment. Other than macrophages, the role that innate immune cells contribute to pancreatic cancer has not been well studied. Ongoing studies will delineate the immune cell infiltration, cytokine levels, and the effect on tumor formation in double mutant Akt1Myr/KRasG12D mice. Understanding the mechanisms by which inflammation affects tumor formation can lead to strategies to inhibit pro-tumor changes, impede PDAC development and improve overall patient survival. Citation Format: Sarah B. Gitto, Kathryn A. Cline, Amr S. Khaled, Deborah A. Altomare.{Authors}. Chronic inflammation induces severe stromal damage and early pancreatic tumors in mice with activated Akt1 and KRas. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; 2016 May 12-15; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2016;76(24 Suppl):Abstract nr A30.</jats:p
    corecore