96 research outputs found

    Coi nostri strumenti: la tradizione delle Quattro Province dall'artigianato alla festa

    Full text link
    Based on both original accounts and published documents, this work describes the musical tradition still flourishing in the Four Provinces Apennines, the mountain region between Genua and Oltrepò. Among its peculiar features are the piffero, a folk oboe constructed and played on the ground, the musa, a bagpipe that accompanied it in the past, and the accordion, that replaced the musa in the first half of the 20th Century. The origins of instruments and customs have to be related to materials used by rural culture and to commercial contacts conveyed by mule caravans, which traversed these mountains and connected them, especially since the Late Middle Ages, to Genua harbour and the Orient on one side and to French and Flemish fairs on the other side. For the last centuries we know about a school of piffero masters who have trasmitted their art orally until contemporary players. They still lead the village feasts in the high valleys, which express a sound sociality as well as the traditional practice of old songs - bujascas, stranots... - and dances - piana, alessandrina, monferrina, giga a due, giga a quattro, povera donna, perigordino, skipping polka, mazurka, waltz... The unexpected richness of such cultural and human heritage leads both to carry it out and to wonder about its roles in our globalized world looking for new identities.Basandosi sia su testimonianze originali sia sui documenti già pubblicati, questo testo illustra la tradizione musicale tuttora viva nell'Appennino delle Quattro Province, il territorio montano compreso fra Genova e l'Oltrepò. Suoi elementi peculiari sono il piffero, un oboe popolare costruito e praticato sul posto, la musa, cornamusa che in passato lo accompagnava, e la fisarmonica, che ha sostituito la musa dalla prima metà del Novecento. Le origini di strumenti e usi sono da riconnettere ai materiali impiegati dalla cultura contadina e ai contatti commerciali veicolati dalle carovane di muli che percorrevano questi monti collegandoli, in particolare dal Basso Medioevo, da un lato al porto di Genova e all'Oriente e dall'altro alle fiere francesi e fiamminghe. Per gli ultimi secoli abbiamo notizia di una scuola di maestri pifferai che hanno trasmesso oralmente la loro arte fino ai suonatori contemporanei. Costoro guidano tuttora le feste dei paesi delle alte valli, nelle quali si esprimono una sana socialità e la pratica tradizionale degli antichi canti - bujasche, stranot... - e danze - piana, alessandrina, monferrina, giga a due, giga a quattro, povera donna, perigordino, polca a saltini, mazurca, valzer... L'insospettata ricchezza di questo patrimonio culturale e umano induce tanto a praticarlo quanto a interrogarsi sui suoi ruoli nel mondo globalizzato in cerca di nuove identità.Basée à la fois sur des témoignages originaux et sur des documents édités, cette oeuvre traite de la tradition musicale toujours vivante dans l'Apennin des Quatre Provinces, pays montagneux situé entre Gênes et l'Oltrepò. Parmi ses composantes spécifiques se trouvent: le piffero, un hautbois populaire confectionné sur place ; la musa, cornemuse qui autrefois accompagnait le piffero et l'accordéon qui remplaça cette dernière dans la première moitié du 20ème siècle. Les origines et usages de ces instruments sont à mettre en relation d'une part avec les matériaux employés par la culture paysanne et d'autre part avec les contacts commerciaux permis par les caravanes de mulets qui parcouraient ces montagnes (particulièrement dès le Moyen-Age central) en les reliant au port de Gênes et à l'Orient d'un côté et aux foires françaises et flamandes de l'autre. En ce qui concerne les derniers siècles nous avons connaissance d'une école de maîtres pifferistes qui ont transmis oralement leur art jusqu'aux musiciens contemporains. Ceux-ci guident toujours les fêtes de village dans les parties les plus hautes des vallées où s'exprime une socialisation équilibrée et se pratiquent, traditionnellement, des anciens chants - bujascas, stranots... et des danses - piana, alessandrina, monferrina, giga à deux, giga à quatre, povera donna, perigordino, polka sautillée, mazurka, valse... La richesse insoupçonnée de ce patrimoine culturel et humain conduit tant à le pratiquer qu'à s'interroger sur ses rôles dans un monde globalisé en quête d'identités nouvelles

    Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease.

    Get PDF
    Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease

    Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>RASSF1A </it>gene silencing by DNA methylation has been suggested as a major event in pancreatic endocrine tumor (PET) but <it>RASSF1A </it>expression has never been studied. The <it>RASSF1 </it>locus contains two CpG islands (<it>A </it>and <it>C</it>) and generates seven transcripts (<it>RASSF1A</it>-<it>RASSF1G</it>) by differential promoter usage and alternative splicing.</p> <p>Methods</p> <p>We studied 20 primary PETs, their matched normal pancreas and three PET cell lines for the (i) methylation status of the <it>RASSF1 </it>CpG islands using methylation-specific PCR and pyrosequencing and (ii) expression of <it>RASSF1 </it>isoforms by quantitative RT-PCR in 13 cases. CpG island A methylation was evaluated by methylation-specific PCR (MSP) and by quantitative methylation-specific PCR (qMSP); pyrosequencing was applied to quantify the methylation of 51 CpGs also encompassing those explored by MSP and qMSP approaches.</p> <p>Results</p> <p>MSP detected methylation in 16/20 (80%) PETs and 13/20 (65%) normal pancreas. At qMSP, 11/20 PETs (55%) and 9/20 (45%) normals were methylated in at least 20% of <it>RASSF1A </it>alleles.</p> <p>Pyrosequencing showed variable distribution and levels of methylation within and among samples, with PETs having average methylation higher than normals in 15/20 (75%) cases (<it>P </it>= 0.01). The evaluation of mRNA expression of <it>RASSF1 </it>variants showed that: i) <it>RASSF1A </it>was always expressed in PET and normal tissues, but it was, on average, expressed 6.8 times less in PET (<it>P </it>= 0.003); ii) <it>RASSF1A </it>methylation inversely correlated with its expression; iii) <it>RASSF1 </it>isoforms were rarely found, except for <it>RASSF1B </it>that was always expressed and <it>RASSF1C </it>whose expression was 11.4 times higher in PET than in normal tissue (<it>P </it>= 0.001). A correlation between <it>RASSF1A </it>expression and gene methylation was found in two of the three PET cell lines, which also showed a significant increase in <it>RASSF1A </it>expression upon demethylating treatment.</p> <p>Conclusions</p> <p><it>RASSF1A </it>gene methylation in PET is higher than normal pancreas in no more than 75% of cases and as such it cannot be considered a marker for this neoplasm. <it>RASSF1A </it>is always expressed in PET and normal pancreas and its levels are inversely correlated with gene methylation. Isoform <it>RASSF1C </it>is overexpressed in PET and the recent demonstration of its involvement in the regulation of the Wnt pathway points to a potential pathogenetic role in tumor development.</p

    Translational approaches to restoring mitochondrial function in Parkinson's disease

    Get PDF
    There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents has been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarize previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI Spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients. Parkinson's disease is a common, relentlessly progressive neurodegenerative disorder. The pathological hallmark is loss of dopaminergic neurons in the substantia nigra. The resulting motor presentation includes rest tremor, bradykinesia and rigidity but the importance of non-motor symptoms such as cognitive impairment and depression is increasingly recognized, too. Currently available dopaminergic treatment often only addresses the motor impairment partially. This review will summarize our current knowledge about mitochondrial dysfunction as a key target for disease-modifying treatment for PD. We will also provide an update on mitochondrial readouts in PD patients, namely imaging and putative mitochondrial biomarkers, which may become highly relevant in the context of future drug trials. This article is protected by copyright. All rights reserved

    Drosophila Marf is the evolutionary ancestor of mammalian Mfn2: a phylogenetic analysis

    Get PDF
    Mitochondria are essential organelles for cellular homeostasis. Their main function is to produce energy: mitochondrial respiration provides most of the ATP required for endoergonic reactions. Furthermore, they regulate levels and transients of cytosolic Ca2+ and are crucially involved in apoptosis, aging and oxidative stress (Dimmer and Scorrano, 2006). As much as 20% of the mitochondrial surface is in close contact with the endoplasmic reticulum (ER). This organization is important for the generation of high Ca2+ microdomains required to activate mitochondrial Ca2+ uptake under certain conditions (Rizzuto et al., 1998a). The sites where ER and mitochondria are juxtaposed form the so called mitochondria-associated membranes (MAMs), crucial for lipid and Ca2+ traffic between the two organelles and are also involved in cell death (de Brito and Scorrano, 2010). Molecular mechanisms responsible for this ER-mitochondria juxtaposition are largely unknown, but it is thought that structural changes of either organelle could regulate the interaction (Pitts et al., 1999; Simmen et al., 2005). The shape of mitochondria is determined by the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping proteins”. In mammalian cells, mitochondrial fusion depends on mitofusin 1 and 2 (Mfn1 and 2) in the outer mitochondrial membrane and on the inner membrane protein optic atrophy 1 (Opa1) (Liesa et al., 2009). Fission requires the additional step of translocation of dynamin-related protein 1 (Drp1) from the cytosol to mitochondria where it presumably docks on the protein fission-1 (hFis1), its adaptor in the outer membrane. Oligomerization of Drp1 is believed to provide the mechanical force to constrict mitochondrial membranes and to fragment the organelle (Hinshaw, 1999b; Smirnova et al., 2001). Translocation of Drp1 to mitochondria depends on its dephosphorylation by calcineurin and other phosphatases (Cereghetti et al., 2008). Mitofusins are dynamin-related GTPases which control mitochondrial fusion and morphology. In the past, the presence of two mammalian mitofusins raised the question of their functional divergence. Nowadays many findings support the idea that Mfn1 and 2 do not display redundant functions. Mfn2 has roles which are not shared by Mfn1, such as the control of mitochondrial oxidation (Bach et al., 2005b) and anti-proliferative function (Chen et al., 2004a). Moreover, while mitochondrial fusion mediated by the inner mitochondrial membrane GTPase OPA1 requires Mfn1 (Cipolat et al., 2004b), Mfn2 appears to be involved in the regulation of endoplasmic reticulum (ER)-mitochondria tethering (de Brito and Scorrano, 2008a). MFN2 has also been involved in several diseases including the peripheral Charcot-Marie-Tooth type IIa (CMTIIa) neuropathy (Zuchner et al., 2004a). Both Mfn1 and Mfn2 are essential for embryonic development and mice deficient in either gene die in mid-gestation, but Mfn2-/- embryos display also deficient placentation (Chen et al., 2003h).. However, post-placentation ablation of either Mfn in the mouse leads to two completely different phenotypes: Mfn1-/- mice are viable, while Mfn2-/- ones day between P1 and P17 as a consequence of massive cerebellar degeneration (Chen et al., 2007b). It is unclear whether the different phenotypes observed in vivo and in vitro can be ascribed to functional differences or simply to different expression patterns of the two Mfns . In addition, it should be noted that all vertebrates possess two Mfn, whereas only one Mfn is retrieved in almost all invertebrates reigns, with the exception of D.melanogaster. The fruitfly possesses 2 mitofusins, Fuzzy onion (Fzo) and Mitochondrial Assembly Regulatory Factor (Marf). Fzo was the first identified mediator of mitochondrial fusion (Hales and Fuller, 1997a). In spermatocytes Fzo mediates the fusion of mitochondria into two giant organelles that form a structure called Nebenkern, which is required to give energy to the flagellum of the spermatid. In fzo mutant flies, mitochondria fail to fuse and wrap each other as many fragmented organelles, giving the impression of ‘fuzzy onions’ when viewed at the electron microscopy. Altough Fzo was able to promote mitochondrial elongation, it was expressed restrictely to spermatids. This raised the question of how mitochondrial fusion was regulated in other tissues of the fruitfly. In 2002 the second mitofusin homologue Marf was identified in D.melanogaster (Hwa et al., 2002). Unlike Fzo, DMarf is expressed ubiquitously and shares 64% of homology with both mammalian mitofusins. Thus, Marf can be likely considered the single “functional” invertebrate Mfn and Drosophila melanogaster is therefore a useful model organism to investigate phylogenesis of higher vertebrate Mfns. In this thesis we set to answer to the following questions: does this model organism represent the evolutionary turning point from one to two mitofusins? Which Mfn is functionally closer to DMarf? To answer to these questions, we first tried to understand in which extension DMarf could complement mammalian mitofusins. To obtain a wider phylogenetic view, we extended our analysis on mitofusins 1 and 2 from the vertebrate Xenopus laevis (XMfn1 and XMfn2) and on mitofusin homologue from the yeast S.cerevisae (Fzo1p). The expression of Fzo1p, DMarf, XMfn1 and XMfn2, induced mitochondrial elongation in Mfn1-/- or Mfn2-/- MEFs, rescuing the fragmented phenotype caused by the absence of the Mfns and indicating that they can substitute for both Mfns. Unlike Mfn1-/- MEFs, Mfn2-/- MEFs have altered ER morphology (de Brito and Scorrano, 2008b). This defect is recovered only after expression of hMfn2 or by an ER-targeted variant of hMfn2 (hMfn2YFFT), independently from mitochondrial shape. In fact Mfn2 is partially localized on ER and is enriched in MAMs. To investigate whether DMarf could complement Mfn2 also in ER shape regulation, we cotransfected Mfn2-/- MEFs with DMarf-V5 and ER-targeted yellow fluorescent protein (ERYFP). DMarf was able to rescue ER shape in Mfn2-/-, thus displaying a functional overlap with Mfn2. We then turned our attention to an in vivo analysis of DMarf function in Drosophila. DMarf was essential for viability as shown by ubiquitous, neuronal and muscle specific downregulation of the protein, which were all lethal. In larvae depleted of DMarf mitochondria clumped in the perinuclear regions of neuronal cell bodies and muscle tissues. In addition, neuromuscular junctions (NMJs) of DMarf-RNAi individuals were severely depleted of mitochondria compared to control larvae. Given that Mitofusin-2 regulates ER morphology and tethering to mitochondria, we also investigated the effect of DMarf knockdown on ER architecture which was seriously compromised upon DMarf knockdown in muscle tissues, with loss of the sarcomeric organization of the ER. To investigate the effect of overexpression of hMfns in Drosophila, we characterized transgenic lines expressing hMfn1, hMfn2 and hMfn2R94Q, one of the most frequent mutations associated with CMT2A (Zuchner et al., 2004b). Aggregation of mitochondria in neuronal cell bodies and muscle and elongated or clumped organelles inside axons were observed upon overexpression of all hMfns. However, NMJs analysis revealed a major difference between hMfn1, hMfn2 and hMfn2R94Q expressions: while NMJs of hMfn2 and hMfn2R94Q overexpressing individuals were depleted of mitochondria, hMfn1 expression did not alter organelles distribution in the nervous system and mitochondria were retained inside junctions. Muscle ER organization was not affected in wild-type hMfns expressing larvae; interestingly, ER morphology was found altered in muscle tissues only of hMfn2R94Q individuals, showing an aspect never investigated in the study of Charcot-Marie-Tooth pathogenesis and suggesting ER morphology alteration as one of the putative factors contributing to the pathobiology of the disease. Given that DMarf was able to complement both mfns in mitochondrial morphology and Mfn2 in ER shape regulation, we tried to understand to which extent hMfn1 and -2 could surrogate Marf in Drosophila. Simultaneous expression of Mfn2 and Marf-RNAi transgenes in the nervous system or in muscle resulted in partial survival to adulthood,. while Mfn1 or Mfn2R94Q were unable to recover the DMarf-RNAi and the flies died as pupae,. However, mitochondrial clusters were still present in neuronal cell bodies and muscle and mitochondria were lacking in NMJs of individuals simultaneously expressing DMarf-RNAi and hMfn2. Thus, although Mfn2 rescued DMarf depletion lethality, this could not be ascribed to a recovery of mitochondrial morphology and distribution. We therefore assessed recovery of ER organization in individuals simultaneously expressing DMarf-RNAi and hMfns. HMfn1 had no effect on ER alteration caused by DMarf knockdown. On the contrary, hMfn2 expression recovered muscle ER architecture both when expressed ubiquitously or only in the muscle . In conclusions, in this Thesis we demonstrate that Fzo1p, DMarf, XMfn1 and XMfn2 expression could rescue mitochondrial morphology in Mfn1 -/- and Mfn2-/- MEFs. Moreover DMarf specifically complements ER shape in Mfn2-/- MEFs. Thus, mitofusins role in regulation of mitochondrial dynamics is conserved between vertebrates and invertebrates. On the other hand, in vivo experiments show that Mfn2, but not Mfn1 rescues the lethal phenotype of DMarf knock-down in Drosophila melanogaster. the rescue of DMarf-RNAi by hMfn2 seemed correlate with the correction of ER organization, whereas mitochondrial morphology and distribution were not restored. We can therefore speculate that Marf is functionally closer to Mfn2 than Mfn1, which may have diverged later during mammalian evolution. Finally, factors other than the disruption of mitochondrial distribution and morphology in the nervous system could explain the lethal phenotype of DMarf knockdown and in perspective be involved in the pathogenesis of CMT2aI mitocondri sono organelli essenziali per l’omeostasi cellulare. La loro funzione primaria è di produrre energia : la respirazione mitocondriale fornisce la maggior parte di ATP necessaria per le reazioni endoergoniche. Inoltre, essi regolano i livelli e i transienti di calcio citosolico e hanno un ruolo cruciale nei processi di apoptosi, invecchiamento e stress ossidativo (Jouaville et al., 1995; Wang, 2001). Il 20% della superficie mitocondriale è in stretto contatto con il reticolo endoplasmico (RE). Questa disposizione è importante per la generazione di microdomini ad alta concentrazione di calcio necessari in certe condizioni per l’attivazione dell’uniporto mitocondriale del Ca2+. I siti di stretto contatto tra il RE e i mitocondri formano le cosiddette “membrane associate ai mitocondri” (MAMs), che sono cruciali per il trasporto di lipidi e Ca2+ tra i due organelli e hanno un ruolo anche nel processo di morte cellulare (Rizzuto et al., 1998). Sebbene i meccanismi molecolari alla base di questa stretta vicinanza tra il RE e i mitocondri siano in larga parte ignoti, si ritiene che tale interazione possa essere regolata da cambiamenti morfologici dei due organelli (Pitt set al., 1999; Simmen et al., 2005). La forma del reticolo mitocondriale è determinata dall’equilibrio tra eventi di fusione e fissione, controllati da una famiglia di “proteine di morfologia mitocondriale”. In cellule di mammifero, la fusione mitocondriale è controllata dalle proteine mitofusina-1 (MFN1) e mitofusina-2 (MFN2) nella membrana esterna e da OPA1 nella membrana mitocondriale interna (Olichon et al., 2002). Nel nostro laboratorio è stato dimostrato che OPA1 promuove la fusione dei mitocondri solo in presenza di mitofusina 1 (Cipolat et al., 2004). La fissione richiede il passaggio aggiuntivo della traslocazione della proteina Drp1 dal citosol ai mitocondri, dove si ancora a hFis1, il suo adattatore molecolare nella OMM. L’oligomerizzazione di Drp1 fornisce la forza meccanica per costringere le membrane mitocondriali fino alla frammentazione dell’organello (Hinshaw et al., 1999; Smirnova et al., 2001). La traslocazione di Drp1 ai mitocondri dipende dalla sua defosforilazione ad opera della fosfatasi calcineurina e di altre fosfatasi (Cereghetti et al., 2008). Le mitofusine sono GTPasi appartenenti alla famiglia delle dinamine che controllano la fusione e la morfologia dei mitocondri. In passato, la presenza di due mitofusine nei mammmiferi ha sollevato la questione sulla loro divergenza funzionale. Oggi molti risultati supportano l'idea che Mfn1 e 2 non abbiano funzioni ridondanti. Mfn2 ha ruoli che Mfn1 non esercita, come il controllo dei processi di ossidazione mediati dai mitocondri (Bach et al., 2005) e la funzione anti-proliferativa (Chen et al., 2004). Inoltre, mentre la fusione mitocondriale indotta dalla proteina della membrana interna OPA1 richiede Mfn1, (Cipolat et al., 2004), Mfn2 sembra essere coinvolta nella regolazione della giustapposizione reticolo endoplasmatico (RE)-mitocondri (de Brito e Scorrano, 2008a). MFN2 è stata associata inoltre alla neuropatia di Charcot-Marie-Tooth di tipo IIa (CMTIIa) (Züchner et al., 2004b). Sia Mfn1 e Mfn2 sono essenziali per lo sviluppo embrionale e topi deficienti in entrambi muoiono prematuramente, ma (Chen et al, 2003) embrioni Mfn2-/- mostrano anche difetti di placentazione. Tuttavia, l'ablazione post-placentazione di una singola Mfn nel topo porta a due fenotipi completamente diversi: i topi Mfn1-/ - sono vitali, mentre topi Mfn2-/ - muoiono tra P1 e P17 come conseguenza della massiccia degenerazione cerebellare (Chen et al. , 2007). Non è chiaro se i diversi fenotipi osservati in vivo e in vitro possano essere attribuiti a differenze funzionali o semplicemente ai diversi schemi di espressione delle due Mfn. Inoltre, tutti i vertebrati possiedono due Mfn, mentre solo una Mfn viene riscontrata nella maggior parte degli invertebrati, con l'eccezione di D.melanogaster. Il moscerino della frutta possiede due mitofusine, ‘Fuzzy onion’ (Fzo) e Mitochondrial Assembly Regulatory Factor (Marf). Fzo è stato il primo mediatore della fusione mitocondriale individuato (Hales e Fuller, 1997). In spermatociti Fzo media la fusione dei mitocondri in due giganti organelli che formano una struttura chiamata Nebenkern, la quale serve a dare energia al flagello degli spermatidi. Nel mutante di fzo i mitocondri non riescono a fondersi e si avvolgono l'un l'altro come molti organelli frammentati, dando l'impressione di 'cipolle increspate' se osservate al microscopio elettronico. Anche se Fzo è in grado di promuovere l'allungamento mitocondriale, è espresso solo negli spermatidi. Ciò ha sollevato la questione di come la fusione dei mitocondri potesse venire regolata in altri tessuti del moscerino della frutta. Nel 2002 il secondo omologo delle mitofusine Marf è stato identificato in D.melanogaster (Hwa et al., 2002). A differenza di Fzo, DMarf è espressa ubiquitariamente e condivide il 64% di omologia con entrambe le mitofusine dei mammiferi. Quindi, Marf può essere considerato la singola mitofusina "funzionale" e Drosophila melanogaster è dunque un organismo modello utile per studiare la filogenesi di MFN nei vertebrati superiori. Le domande a cui abbiamo cercato di dare risposta in questa tesi sono le seguenti: questo organismo modello rappresenta il punto di svolta evolutiva da uno a due mitofusine? Quale Mfn è funzionalmente più vicina a DMarf? Al fine di rispondere a queste domande, abbiamo innanzitutto cercato di capire in quale estensione DMarf potesse complementare le mitofusine dei mammiferi. Per ottenere una visione più ampia dal punto di vista filogenetico, abbiamo esteso la nostra analisi alle mitofusine 1 e 2 del vertebrato Xenopus laevis (XMfn1 e XMfn2) e all’omologo di mitofusina di lievito S.cerevisae (Fzo1p). L'espressione di Fzo1p, DMarf, XMfn1 e XMfn2, induce allungamento dei mitocondri in Mfn1-/ - o Mfn2-/ - MEF, recuperando il fenotipo di frammentazione causato dalla mancanza delle singole Mfn e indicando che esse possono sostituire entrambe le Mfn. A differenza di Mfn1-/ - MEF, Mfn2-/ - MEF mostrano una morfologia del reticolo endoplasmico alterata (de Brito e Scorrano, 2008b). Questo difetto è recuperato solo dopo l'espressione di hMfn2 o di una variante hMfn2 specificamente localizzata al RE (hMfn2YFFT), indipendentemente dalla forma mitocondriale. Mfn2 infatti è parzialmente localizzata nel RE e si trova arricchita nelle MAMs. Per capire se DMarf potesse complementare Mfn2 anche nella regolazione della morfologia del RE, abbiamo co-trasfettato Mfn2-/ - MEFs con Dmarf con il tag V5 e una proteina fluorescente gialla localizzata nel RE (ERYFP). DMarf riesce a recuperare la morfologia del RE in Mfn2-/ -, mostrando quindi una più forte conservazione funzionale con Mfn2. Abbiamo poi rivolto la nostra attenzione ad un analisi in vivo della funzione di DMarf in Drosophila. DMarf è essenziale per la vitalità, poichè il silenziamento ubiquitario o specificatamente a carico del sistema nervoso o del tessuto muscolare della proteina è letale. In larve DMarf-RNAi i mitocondri si aggregano nelle regioni perinucleari dei corpi cellulari neuronali e dei tessuti muscolari. Inoltre, giunzioni neuromuscolari degli individui DMarf-RNAi risultano gravemente depauperati dei mitocondri rispetto alle larve di controllo. Dato che mitofusina-2 regola la morfologia del reticolo endoplasmico e il suo avvicinamento ai mitocondri, abbiamo studiato l’effetto del silenziamento di Dmarf sull’architettura del RE, la quale è risultata essere seriamente compromessa nei tessuti muscolari mostrando perdita dell’organizzazione del RE lungo i sarcomeri in seguito al silenziamento della proteina. Per studiare l'effetto della sovraespressione di hMfn in Drosophila, abbiamo caratterizzato le linee transgeniche esprimenti hMfn1, hMfn2 e hMfn2R94Q, una delle mutazioni più frequenti associate al CMT2A (Züchner et al., 2004a). Aggregazione dei mitocondri in corpi cellulari neuronali e nel muscolo e organelli di forma allungata o aggregati all'interno di assoni sono stati osservati in seguito a sovraespressione di tutte le hMfns. Tuttavia, l'analisi delle giunzioni neuromuscolari ha rivelato una grande differenza tra le espressioni hMfn1, hMfn2 e hMfn2R94Q: mentre le giunzioni di individui sovraesprimenti hMfn2 e hMfn2R94Q erano depauperate dei mitocondri, l’espressione di hMfn1 non ha modificato la distribuzione degli organelli nel sistema nervoso e mitocondri erano mantenuti all'interno delle giunzioni. L’organizzazione del RE nel muscolo non è stata influenzata dall’espressione di hMfns wild-type; la morfologia del RE è invece alterata in tessuti muscolari di individui esprimenti hMfn2R94Q, mettendo in luce un aspetto non ancora indagato nello studio della patogenesi di Charcot-Marie-Tooth e suggerendo l'alterazione della morfologia del RE come uno dei plausibili fattori che possono contribuire alla patogenesi della malattia. Dato che DMarf è stato in grado di complementare sia entrambe le Mfn nella morfologia mitocondriale e sia Mfn2 nella regolazione della morfologia del RE, abbiamo cercato di capire in che misura hMfn1 e -2 potessero complementare DMarf in Drosophila. L'espressione simultanea dei transgeni MFN2 e DMarf-RNAi nel sistema nervoso o nel tessuto muscolare provocano parziale sopravvivenza fino all'età adulta, mentre Mfn1 o Mfn2R94Q non sono riusciti a recuperare il fenotipo letale del DMarf-RNAi. Tuttavia, gli aggregati mitocondriali erano ancora presenti nei corpi delle cellule neuronali e nei tessuti muscolari e le giunzioni neuromuscolari di individui esprimenti contemporaneamente DMarf-RNAi e hMfn2 prive di mitocondri. Quindi, anche se MFN2 recupera la letalità dovuta al silenziamento di DMarf, questo non può essere attribuito a un recupero della morfologia e della distribuzione mitocondriale. Abbiamo quindi valutato il recupero dell’organizzazione del RE in individui esprimenti simultaneamente Dmarf-RNAi e hMfn. HMfn1 non ha avuto alcun effetto sull’ alterazione del RE causata da Dmarf-RNAi. Al contrario, hMfn2 espressione ha recuperato l’architettura del RE nel muscolo sia quando espressa ubiquitariamente o solo nel tessuto muscolare. In conclusione, in questa tesi abbiamo dimostrato che l’ espressione di Fzo1p, DMarf, XMfn1 e XMfn2 è in grado di recuperare la morfologia mitocondriale in Mfn1 - / - e Mfn2-/ - MEF. Inoltre DMarf complementa specificamente la morfologia del RE in Mfn2-/ - MEF. Quindi, il ruolo delle mitofusine nella regolazione della dinamica mitocondriale è conservato tra vertebrati e invertebrati. Tuttavia, esperimenti in vivo dimostrano che Mfn2, ma non Mfn1 recupera il fenotipo letale dovuto al silenziamento di DMarf in Drosophila melanogaster. Il recupero di DMarf-RNAi da parte di hMfn2 sembra correlare con la correzione dell’ organizzazione del RE, mentre la morfologia mitocondriale e la distribuzione non sono vengono ripristinati. Possiamo quindi ipotizzare che Marf sia funzionalmente più vicina ai Mfn2 rispetto a Mfn1, la quale potrebbe essere comparsa più tardi nel corso dell'evoluzione dei mammiferi. Infine, altri fattori,oltre l’alterazione della morfologia e distribuzione mitocondriale nel sistema nervoso potrebbero spiegare la letalità causata dal silenziamento di DMarf e essere quindi coinvolti nella patogenesi della CMT2A

    Development of a software architecture for intelligent vehicles based on different automation levels

    No full text
    Questa tesi di dottorato presenta un nuovo paradigma di guida automatizzata basato su comandi di alto livello unitamente ad una nuova architettura software per veicoli intelligenti in grado di supportare diversi livelli di automazione. Inizialmente, viene effettuata una panoramica dei diversi livelli di automazione, partendo dal livello completamente manuale fino al livello completamente automatico; successivamente viene effettuata una dettagliata descrizione del nuovo paradigma di guida, detto Digital Driving, con particolare attenzione al pianificatore a livello di manovra, il quale è basato su una nuova modalità di pianificazione, legata al concetto di checkpoint. Dopo questo, viene fornita una panoramica sull'architettura software implementata, la quale viene poi descritta più nel dettaglio nei suoi aspetti chiave. Infine vengono presentate due applicazioni di percezione, sviluppate all'interno dell'architettura. Un'analisi del paradigma di guida proposto e dell'architettura software, unitamente all'introduzione alle prossime dimostrazioni pubbliche del progetto sviluppato, concludono questa tesi di dottorato

    Application of a virtual inerter in active vibration control using inertial actuators

    Get PDF
    In this paper the application of an inerter to a control system based on inertial actuators is investigated. Since the dynamics of this kind of actuators affects the stability of the controlled system, the application of the inerter aims to limit instability problems by shifting down the resonance frequency of the actuator. The interaction of this passive element with the other vibration modes of the structure under control is not negligible. The inerter should be physically placed in parallel with the elastic suspension of the actuator and the transducer; in this paper, the inerter behavior is simulated by the inertial actuator through an acceleration feedback. First, the study is carried out on a two degrees-of-freedom model and stability considerations are made; then, the approach is implemented on the Finite Element model of a clamped-clamped beam which is also used as experimental test rig. Finally, the proposed solution is validated with experimental results
    corecore