324 research outputs found

    Working Partnership USA: The Latest Initiative for a Council On the Cutting Edge

    Get PDF
    [Excerpt] Inject a dose of innovation and a lot of hard work, and there are over 600 local labor councils across the United States which can be jumpstarted to play pivotal roles in labor\u27s rebirth. Our experience in Santa Clara County (San Jose and Silicon Valley, California) demonstrates what can be accomplished when a central body moves aggressively to realize its full promise. New initiatives such as establishing a non-profit called Working Partnerships USA to promote an economic justice agenda, and forming the South Bay Campaign Management Institute to train and support labor\u27s candidates are rapidly becoming effective vehicles for political action, economic development, and community organizing

    Mid-Infrared Spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 2. Determination of the Mean Composition of the Upper Troposphere and Stratosphere

    Full text link
    Mid-infrared spectral observations Uranus acquired with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope are used to determine the abundances of C2H2, C2H6, CH3C2H, C4H2, CO2, and tentatively CH3 on Uranus at the time of the 2007 equinox. For vertically uniform eddy diffusion coefficients in the range 2200-2600 cm2 s-1, photochemical models that reproduce the observed methane emission also predict C2H6 profiles that compare well with emission in the 11.6-12.5 micron wavelength region, where the nu9 band of C2H6 is prominent. Our nominal model with a uniform eddy diffusion coefficient Kzz = 2430 cm2 sec-1 and a CH4 tropopause mole fraction of 1.6x10-5 provides a good fit to other hydrocarbon emission features, such as those of C2H2 and C4H2, but the model profile for CH3C2H must be scaled by a factor of 0.43, suggesting that improvements are needed in the chemical reaction mechanism for C3Hx species. The nominal model is consistent with a CH3D/CH4 ratio of 3.0+-0.2x10-4. From the best-fit scaling of these photochemical-model profiles, we derive column abundances above the 10-mbar level of 4.5+01.1/-0.8 x 10+19 molecule-cm-2 for CH4, 6.2 +- 1.0 x 10+16 molecule-cm-2 for C2H2 (with a value 24% higher from a different longitudinal sampling), 3.1 +- 0.3 x 10+16 molecule-cm-2 for C2H6, 8.6 +- 2.6 x 10+13 molecule-cm-2 for CH3C2H, 1.8 +- 0.3 x 10+13 molecule-cm-2 for C4H2, and 1.7 +- 0.4 x 10+13 molecule-cm-2 for CO2 on Uranus. Our results have implications with respect to the influx rate of exogenic oxygen species and the production rate of stratospheric hazes on Uranus, as well as the C4H2 vapor pressure over C4H2 ice at low temperatures

    Why, or Why Not, Be an Originalist?

    Get PDF
    On November 15, 2019, the Federalist Society hosted the second showcase panel of the 2019 National Lawyers Convention at the Mayflower Hotel in Washington, DC. The topic of the panel was “Why, or Why Not, Be an Originalist?” There are a variety of arguments for following originalism today, such as justifications rooted in language, positivism, sovereignty, and consequences. This panel would look at many normative positions for and against originalism

    Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting

    Get PDF
    Objectives: Efforts to treat Escherichia coli infections are increasingly being compromised by the rapid, global spread of antimicrobial resistance (AMR). Whilst AMR in E. coli has been extensively investigated in resource-rich settings, in sub-Saharan Africa molecular patterns of AMR are not well described. In this study, we have begun to explore the population structure and molecular determinants of AMR amongst E. coli isolates from Malawi. Methods: Ninety-four E. coli isolates from patients admitted to Queen’s Hospital, Malawi, were whole-genome sequenced. The isolates were selected on the basis of diversity of phenotypic resistance profiles and clinical source of isolation (blood, CSF and rectal swab). Sequence data were analysed using comparative genomics and phylogenetics. Results: Our results revealed the presence of five clades, which were strongly associated with E. coli phylogroups A, B1, B2, D and F. We identified 43 multilocus STs, of which ST131 (14.9%) and ST12 (9.6%) were the most common. We identified 25 AMR genes. The most common ESBL gene was blaCTX-M-15 and it was present in all five phylogroups and 11 STs, and most commonly detected in ST391 (4/4 isolates), ST648 (3/3 isolates) and ST131 [3/14 (21.4%) isolates]. Conclusions: This study has revealed a high diversity of lineages associated with AMR, including ESBL and fluoroquinolone resistance, in Malawi. The data highlight the value of longitudinal bacteraemia surveillance coupled with detailed molecular epidemiology in all settings, including low-income settings, in describing the global epidemiology of ESBL resistance

    Research on HIV cure: Mapping the ethics landscape

    Get PDF
    According to current estimates, 36.7 million people are infected with HIV worldwide. Despite large-scale and growing programs to prevent and treat HIV infection, possible approaches to achieve a cure for HIV infection are of strong interest. In the development of candidate approaches to achieve an HIV cure, issues of future translation to human study participants, evidence-based practice, clinical care, diverse populations, and populations in low- and middle-income countries should all be considered. An HIV cure should be effective, safe, simple, affordable, and scalable. Acceptability research is a critical adjunct to ongoing biomedical HIV cure research efforts. Anticipating some of the ethical and implementation challenges related to HIV cure strategies is necessary before the availability of effective interventions. Ongoing engagement of stakeholders is needed to resolve ethical, logistical, social, cultural, policy, regulatory, and implementation challenges at all stages of the HIV cure research development process

    Managing Invasive Plants on Great Plains Grasslands: A Discussion of Current Challenges

    Get PDF
    The Great Plains of North America encompass approximately 1,300,000 km2 of land from Texas to Saskatchewan. The integrity of these lands is under continual assault by long-established and newly-arrived invasive plant species, which can threaten native species and diminish land values and ecological goods and services by degrading desired grassland resources. The Great Plains are a mixture of privately and publicly owned lands, which leads to a patchwork of varying management goals and strategies for controlling invasive plants. Continually updated knowledge is required for efficient and effective management of threats posed by changing environments and invasive plants. Here we discuss current challenges, contemporary management strategies, and management tools and their integration, in hopes of presenting a knowledge resource for new and experienced land managers and others involved in making decisions regarding invasive plant management in the Great Plains

    Managing Invasive Plants on Great Plains Grasslands: A Discussion of Current Challenges

    Get PDF
    The Great Plains of North America encompass approximately 1,300,000 km2 of land from Texas to Saskatchewan. The integrity of these lands is under continual assault by long-established and newly-arrived invasive plant species, which can threaten native species and diminish land values and ecological goods and services by degrading desired grassland resources. The Great Plains are a mixture of privately and publicly owned lands, which leads to a patchwork of varying management goals and strategies for controlling invasive plants. Continually updated knowledge is required for efficient and effective management of threats posed by changing environments and invasive plants. Here we discuss current challenges, contemporary management strategies, and management tools and their integration, in hopes of presenting a knowledge resource for new and experienced land managers and others involved in making decisions regarding invasive plant management in the Great Plains

    Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models

    Get PDF
    Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI
    corecore