54 research outputs found
Acoustic Signalling in Eurasian Penduline Tits Remiz Pendulins: Repertoire Size Signals Male Nest Defence
Elaborate male song may restrain competitors in various songbirds, although the exact mechanism, information content and information flow of acoustic signals are not completely understood. Here we focus on the interactions between resident and intruder males using the Eurasian penduline tit Remiz pendulinus. The breeding system of this small passerine bird is unusually variable including sequential polygamy by both sexes, and appears to be driven by intense sexual selection and sexual conflict over parental care. We had two objectives in this study: (i) to investigate whether male repertoire size is an intra-sexual signal in penduline tits, and (ii) to determine emitter and receiver roles during acoustic communication between residents and intruders. We tested these objectives in a natural population by recording the resident males' song and then challenging them by song playbacks. The residents' approach to intruder stimuli and behavioural responses were monitored. We found that intruder repertoire size did not evoke different responses by the residents. Rather, the resident's approach distance and behavioural response was predicted by his own repertoire size, suggesting that song in penduline tits is involved in male-male communication, and repertoire size may function as a reliable signal of the resident male's ability and willingness to defend his nest and avert possible intruders
Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity
BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream
Bi-Directional Sexual Dimorphisms of the Song Control Nucleus HVC in a Songbird with Unison Song
Sexually dimorphic anatomy of brain areas is thought to be causally linked to sex differences in behaviour and cognitive functions. The sex with the regional size advantage (male or female) differs between brain areas and species. Among adult songbirds, males have larger brain areas such as the HVC (proper name) and RA (robust nucleus of the arcopallium) that control the production of learned songs. Forest weavers (Ploceus bicolor) mated pairs sing a unison duet in which male and female mates learn to produce identical songs. We show with histological techniques that the volume and neuron numbers of HVC and RA were ≥1.5 times larger in males than in females despite their identical songs. In contrast, using in-situ hybridizations, females have much higher (30–70%) expression levels of mRNA of a number of synapse-related proteins in HVC and/or RA than their male counterparts. Male-typical and female-typical sexual differentiation appears to act on different aspects of the phenotypes within the same brain areas, leading females and males to produce the same behaviour using different cellular mechanisms
Розрахунок та проектування окремого фундаменту будівлі на природній ґрунтовій основі. Методичні рекомендації до виконання практичних завдань та курсового проекту з дисципліни «Механіка ґрунтів, основи і фундаменти» сту- дентами напрямів підготовки 6.060101 Будівництво та 6.050301 Гірництво
Подано методичні рекомендації до виконання практичних завдань та кур-
сового проекту з дисципліни «Механіка ґрунтів, основи і фундаменти» для сту-
дентів напрямів підготовки 6.060101 Будівництво та 6.050301 Гірництво.
Розглянуто порядок проектування фундаменту будівлі мілкого закладан-
ня на природній ґрунтовій основі.
Методичні рекомендації передбачають виконання курсового проекту
«Розрахунок та проектування окремого фундаменту будівлі на природній ґрун-
товій основі» як із викладачем, так і під час самостійної роботи.
Можна використовувати також у підготовці курсового та дипломного про-
ектування
Sex, Ecology and the Brain: Evolutionary Correlates of Brain Structure Volumes in Tanganyikan Cichlids
Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes
Song plasticity over time and vocal learning in clay-colored thrushes
Songbirds have been traditionally classified into close-ended or open-ended learning species according to the length of the sensitive period during which birds are able to memorize new vocalizations. Closed-ended learners are generally not capable of changing their song after the first year of life, while open-ended learners show song plasticity as adults. A few Turdus species have been sug- gested to be open-ended learners, but no long-term study has been conducted to investigate their song plasticity over time. We analyzed the songs of clay-colored thrushes, T. grayi, over four successive breeding seasons to assess song plasticity in their syllable repertoires within and between breeding seasons. A total of 16,262 syllables were classi- fied through visual inspection of spectrograms and multi- dimensional scaling analysis based on spectrogram correlations. On average, 563 ± 153 (SD) syllables per male per breeding season were analyzed. Male repertoire size was 9–20 syllable types. Males were capable of modifying their syllable repertoire between the initial and final periods of the breeding season. Song plasticity within breeding seasons may be associated with imitation between neighboring males, suggesting song learning in males that were C2 years old. This short-term plasticity is not enough, however, to explain the high proportion of change (mean = 65 % syllable types) in repertoire composition between breeding seasons in adult males. Song plasticity resulting from annual changes in repertoire composition could be explained by open-ended learning, but another mechanism, extended memory and re-expression, could also explain long-term plasticity. Experimental studies controlling the acoustic environment are needed to determine which mechanism is responsible for such a high level of song plasticity.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí
- …