43 research outputs found
Replacement Gastrostomy Tube Causing Acute Pancreatitis: Case Series with Review of Literature
Context Percutaneous endoscopic gastrostomy (PEG) feedings are generally considered safe with few serious complications. Acute pancreatitis is a rare complication associated with replacement percutaneous endoscopic gastrostomy tubes.
Case report We report two cases of acute pancreatitis induced by migrated replacement percutaneous endoscopic gastrostomy tubes.
Conclusions Migration of a balloon into the duodenum can result in external manipulation of the ampulla of Vater thereby disturbing the flow of pancreatic secretions leading to acute pancreatitis. Recognition of this complication is important and should be included as potential etiology of acute pancreatitis in patients receiving percutaneous endoscopic gastrostomy feedings. Periodic examination and documentation of the distance of the balloon from the skin should be performed to document the position of the tubes or any inadvertent migration of the tubes. The use of Foley catheters as permanent replacement tubes should be considered medically inappropriate
The SMC SNR 1E0102.2-7219 as a Calibration Standard for X-ray Astronomy in the 0.3-2.5 keV Bandpass
The flight calibration of the spectral response of CCD instruments below 1.5
keV is difficult in general because of the lack of strong lines in the on-board
calibration sources typically available. We have been using 1E 0102.2-7219, the
brightest supernova remnant in the Small Magellanic Cloud, to evaluate the
response models of the ACIS CCDs on the Chandra X-ray Observatory (CXO), the
EPIC CCDs on the XMM-Newton Observatory, the XIS CCDs on the Suzaku
Observatory, and the XRT CCD on the Swift Observatory. E0102 has strong lines
of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the
spectrum. The spectrum of E0102 has been well characterized using
high-resolution grating instruments, namely the XMM-Newton RGS and the CXO
HETG, through which a consistent spectral model has been developed that can
then be used to fit the lower-resolution CCD spectra. We have also used the
measured intensities of the lines to investigate the consistency of the
effective area models for the various instruments around the bright O (~570 eV
and 654 eV) and Ne (~910 eV and 1022 eV) lines. We find that the measured
fluxes of the O VII triplet, the O VIII Ly-alpha line, the Ne IX triplet, and
the Ne X Ly-alpha line generally agree to within +/-10 % for all instruments,
with 28 of our 32 fitted normalizations within +/-10% of the RGS-determined
value. The maximum discrepancies, computed as the percentage difference between
the lowest and highest normalization for any instrument pair, are 23% for the O
VII triplet, 24% for the O VIII Ly-alpha line, 13% for the Ne IX triplet, and
19% for the Ne X Ly-alpha line. If only the CXO and XMM are compared, the
maximum discrepancies are 22% for the O VII triplet, 16% for the O VIII
Ly-alpha line, 4% for the Ne IX triplet, and 12% for the Ne X Ly-alpha line.Comment: 16 pages, 11 figures, to be published in Proceedings of the SPIE
7011: Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray 200
The Three-Dimensional Expansion of the Ejecta from Tycho's Supernova Remnant
We present the first three-dimensional measurements of the velocity of
various ejecta knots in Tycho's supernova remnant, known to result from a Type
Ia explosion. Chandra X-ray observations over a 12-year baseline from 2003 to
2015 allow us to measure the proper motion of nearly 60 "tufts" of Si-rich
ejecta, giving us the velocity in the plane of the sky. For the line of sight
velocity, we use two different methods: a non-equilibrium ionization model fit
to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of
a series of Gaussian lines. These methods give consistent results, allowing us
to determine the red or blue shift of each of the knots. Assuming a distance of
3.5 kpc, we find total velocities that range from 2400 to 6600 km s,
with a mean of 4430 km s. We find several regions where the ejecta knots
have overtaken the forward shock. These regions have proper motions in excess
of 6000 km s. Some Type Ia supernova explosion models predict a velocity
asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and
discuss our findings in light of various explosion models, favoring those
delayed detonation models with relatively vigorous and symmetrical
deflagrations. Finally, we compare measurements with models of the remnant's
evolution that include both smooth and clumpy ejecta profiles, finding that
both ejecta profiles can be accommodated by the observations.Comment: Accepted for publication in ApJ. Some figures slightly degraded to
reduce file siz
Predicting Chandra CCD Degradation with the Chandra Radiation Model
Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This presentation describes CRM, its role in Chandra operations, and its prediction of the ACIS CTI increase
Isolated angioedema of the bowel due to C1 esterase inhibitor deficiency: a case report and review of literature
<p>Abstract</p> <p>Introduction</p> <p>We report a rare, classic case of isolated angioedema of the bowel due to C1-esterase inhibitor deficiency. It is a rare presentation and very few cases have been reported worldwide. Angioedema has been classified into three categories.</p> <p>Case presentation</p> <p>A 66-year-old Caucasian man presented with a ten-month history of episodic severe cramping abdominal pain, associated with loose stools. A colonoscopy performed during an acute attack revealed nonspecific colitis. Computed tomography of the abdomen performed at the same time showed a thickened small bowel and ascending colon with a moderate amount of free fluid in the abdomen. Levels of C4 (< 8 mg/dL; reference range 15 to 50 mg/dL), CH50 (< 10 U/mL; reference range 29 to 45 U/ml) and C1 inhibitor (< 4 mg/dL; reference range 14 to 30 mg/dL) were all low, supporting a diagnosis of acquired angioedema with isolated bowel involvement. Our patient's symptoms improved with antihistamine and supportive treatment.</p> <p>Conclusion</p> <p>In addition to a detailed comprehensive medical history, laboratory data and imaging studies are required to confirm a diagnosis of angioedema due to C1 esterase inhibitor deficiency.</p
Managing Radiation Degradation of CCDs on the Chandra X-Ray Observatory--III
The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study
Background:
Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy.
Methods:
Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored.
Results:
A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays.
Conclusions:
IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients