1,457 research outputs found

    Coexisting charge and magnetic orders in the dimer-chain iridate Ba5AlIr2O11

    Get PDF
    We have synthesized and studied single-crystal Ba5AlIr2O11 that features dimer chains of two inequivalent octahedra occupied by tetravalent and pentavalent ions, respectively. Ba5AlIr2O11 is a Mott insulator that undergoes a subtle structural phase transition near 210 K and a magnetic transition at 4.5 K; the latter transition is surprisingly resistant to applied magnetic fields up to 12 T, but sensitive to modest applied pressure. All results indicate that the phase transition at 210 K signals an enhanced charge order that induces electrical dipoles and strong dielectric response near 210 K. It is clear that the strong covalency and spin-orbit interaction (SOI) suppress double exchange in Ir dimers and stabilize a novel magnetic state. The behavior of Ba5AlIr2O11 therefore provides unique insights into the physics of SOI along with strong covalency in competition with double exchange interactions of comparable strength.Comment: 6 figures, 20 pages. arXiv admin note: text overlap with arXiv:1505.0087

    Survey of Terrestrial Invertebrate Species from Byers Cave; Dade County, Georgia

    Get PDF
    Byers Cave is one of Georgia’s largest cave systems and is inhabited by a wide variety of unique invertebrate organisms that have not been documented or studied. From March 2008 through April 2010, baited ramp pit-fall traps and visual surveys were used to sample and document invertebrate species that live in this cave system. After three trapping periods and four visual surveys, we collected over 4,400 individuals comprising 13 orders, 29 families and 34 species. The majority of these species were troglophiles and trogloxenes; however, there were also numerous troglobitic species present

    Ferromagnetic resonance in periodic particle arrays

    Full text link
    We report measurements of the ferromagnetic resonance (FMR) spectra of arrays of submicron size periodic particle arrays of permalloy produced by electron-beam lithography. In contrast to plane ferromagnetic films, the spectra of the arrays show a number of additional resonance peaks, whose position depends strongly on the orientation of the external magnetic field and the interparticle interaction. Time-dependent micromagnetic simulation of the ac response show that these peaks are associated with coupled exchange and dipolar spin wave modesComment: 4 pages, 4 figure

    Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics

    Get PDF
    Microorganisms play a fundamental role in the cycling of nutrients and energy on our planet. A common strategy for many microorganisms mediating biogeochemical cycles in anoxic environments is syntrophy, frequently necessitating close spatial proximity between microbial partners. We are only now beginning to fully appreciate the diversity and pervasiveness of microbial partnerships in nature, the majority of which cannot be replicated in the laboratory. One notable example of such cooperation is the interspecies association between anaerobic methane oxidizing archaea (ANME) and sulfate-reducing bacteria. These consortia are globally distributed in the environment and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. The interdependence of these currently uncultured microbes renders them difficult to study, and our knowledge of their physiological capabilities in nature is limited. Here, we have developed a method to capture select microorganisms directly from the environment, using combined fluorescence in situ hybridization and immunomagnetic cell capture. We used this method to purify syntrophic anaerobic methane oxidizing ANME-2c archaea and physically associated microorganisms directly from deep-sea marine sediment. Metagenomics, PCR, and microscopy of these purified consortia revealed unexpected diversity of associated bacteria, including Betaproteobacteria and a second sulfate-reducing Deltaproteobacterial partner. The detection of nitrogenase genes within the metagenome and subsequent demonstration of 15N2 incorporation in the biomass of these methane-oxidizing consortia suggest a possible role in new nitrogen inputs by these syntrophic assemblages

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system

    Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics

    Get PDF
    Metatranscriptomes generated by pyrosequencing hold significant potential for describing functional processes in complex microbial communities. Meeting this potential requires protocols that maximize mRNA recovery by reducing the relative abundance of ribosomal RNA, as well as systematic comparisons to identify methodological artifacts and test for reproducibility across data sets. Here, we implement a protocol for subtractive hybridization of bacterial rRNA (16S and 23S) that uses sample-specific probes and is applicable across diverse environmental samples. To test this method, rRNA-subtracted and unsubtracted transcriptomes were sequenced (454 FLX technology) from bacterioplankton communities at two depths in the oligotrophic open ocean, yielding 10 data sets representing ~350 Mbp. Subtractive hybridization reduced bacterial rRNA transcript abundance by 40–58%, increasing recovery of non-rRNA sequences up to fourfold (from 12% to 20% of total sequences to 40–49%). In testing this method, we established criteria for detecting sequences replicated artificially via pyrosequencing errors and identified such replicates as a significant component (6–39%) of total pyrosequencing reads. Following replicate removal, statistical comparisons of reference genes (identified via BLASTX to NCBI-nr) between technical replicates and between rRNA-subtracted and unsubtracted samples showed low levels of differential transcript abundance (<0.2% of reference genes). However, gene overlap between data sets was remarkably low, with no two data sets (including duplicate runs from the same pyrosequencing library template) sharing greater than 17% of unique reference genes. These results indicate that pyrosequencing captures a small subset of total mRNA diversity and underscores the importance of reliable rRNA subtraction procedures to enhance sequencing coverage across the functional transcript pool.Agouron InstituteGordon and Betty Moore FoundationUnited States. Dept. of Energy. Office of ScienceNational Science Foundation (U.S.) (NSF Science and Technology Center Award EF0424599

    Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    Get PDF
    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10&apos;s - 100&apos;s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.close0

    Aggravated stuttering following subthalamic deep brain stimulation in Parkinson's disease - two cases

    Get PDF
    Stuttering is a speech disorder with disruption of verbal fluency which is occasionally present in patients with Parkinson's disease (PD). Long-term medical management of PD is frequently complicated by fluctuating motor functions and dyskinesias. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment of motor fluctuations and is the most common surgical procedure in PD. Here we report the re-occurrence and aggravation of stuttering following STN-DBS in two male patients treated for advanced PD. In both patients the speech fluency improved considerably when the neurostimulator was turned off, indicating that stuttering aggravation was related to neurostimulation of the STN itself, its afferent or efferent projections and/or to structures localized in the immediate proximity. This report supports previous studies demonstrating that lesions of the basal ganglia-thalamocortical motor circuit, including the STN, is involved in the development of stuttering. In advanced PD STN-DBS is generally an effective and safe treatment. However, patients with PD and stuttering should be informed about the risk of aggravated symptoms following surgical therapy

    Towards a Metric for the Assessment of Safety Critical Control Systems

    Get PDF
    There is a need for better integration of the fault tolerant and the control designs for safety critical systems such as aircraft. The dependability of current designs is assessed primarily with measures of the interconnection of fault tolerant components: the reliability function and the mean time to failure. These measures do not directly take into account the interaction of the fault tolerant components with the dynamics of the aircraft. In this paper, a first step to better integrate these designs is made. It is based on the observation that unstable systems are intrinsically unreliable and that a necessary condition for reliability is the existence of a stabilizing control law that depends on the interconnection of the working fault tolerant components. Since operation of a fault tolerant interconnection of digital computers in a harsh environment can result in transient errors, a methodology to analyze the mean square stability of the fault tolerant closed-loop system is presented. A definition for mean square stabilizability is then used to introduce the new dynamical system reliability concept. An example illustrates the effect on mean square stability of several fault tolerant design choices and illustrates possible dynamical system reliability plot
    corecore