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Towards a Metric for the

Assessment of Safety Critical Control Systems

Oscar R. González∗, Jorge R. Chávez-Fuentes† and W. Steven Gray‡

Old Dominion University, Norfolk, VA 23529-0246, U.S.A.

There is a need for better integration of the fault tolerant and the control designs for

safety critical systems such as aircraft. The dependability of current designs is assessed

primarily with measures of the interconnection of fault tolerant components: the reliability

function and the mean time to failure. These measures do not directly take into account the

interaction of the fault tolerant components with the dynamics of the aircraft. In this paper,

a first step to better integrate these designs is made. It is based on the observation that

unstable systems are intrinsically unreliable and that a necessary condition for reliability

is the existence of a stabilizing control law that depends on the interconnection of the

working fault tolerant components. Since operation of a fault tolerant interconnection of

digital computers in a harsh environment can result in transient errors, a methodology

to analyze the mean square stability of the fault tolerant closed-loop system is presented.

A definition for mean square stabilizability is then used to introduce the new dynamical

system reliability concept. An example illustrates the effect on mean square stability of

several fault tolerant design choices and illustrates possible dynamical system reliability

plots.

I. Introduction

E
very safety critical control system application uses fault tolerant technology to minimize the effect of
faults and increase the reliability, dependability, availability, and maintainability of the system.1–4 The

designers of such systems consider several performance metrics to arrive at a final design employing passive
and/or active fault tolerant technologies. Passive technologies include replicated sensors, actuators, and
processing elements for control system computations and supervisory control; while active fault tolerant
technologies include fault detection, isolation and reconfiguration. Assessment of these passive fault tolerant
technologies is done starting with fault tolerant metrics of the individual replicated components and deriving
a metric for their interconnection. The well-known metrics include the reliability function (probability that
a component is operating correctly beyond a given time) and the mean time to failure (MTTF) of the
component. There is no well-established assessment of the active fault tolerant technologies nor of the hybrid
closed-loop system that includes either type of fault tolerant technology and a continuous-time process. In
Refs. 5–8, the closed-loop system with passive fault tolerant components is assumed to have two failure
states: failed safe and failed unsafe. Failures are triggered by a fault that led to an error in the operation
of the system, which resulted in a significant deviation of the system operation. Additional failure states
are needed if active fault tolerant components are used, corresponding to the detected or undetected failure
states. The main proposed metric for comparison of these systems is the mean time to fail unsafe (MTTFU).
The system safety metric (probability that the system is operational or failed safe at a given time) is also used
for comparison in Refs. 6,7. Fundamentally, these metrics are based on the structure of the interconnection
of the fault tolerant components and not on the dynamical system and excitation characteristics. A few
metrics based on the response of the dynamical system are available. In Refs. 9, 10, the mean first passage

∗The corresponding author. Associate Professor, Systems Research Laboratory, Department of Electrical and Computer

Engineering, phone/fax: 757-683-4966/3220, gonzalez@ece.odu.edu
†Ph.D. student, Systems Research Laboratory, Department of Electrical and Computer Engineering, jchav004@odu.edu
‡Associate Professor, Systems Research Laboratory, Department of Electrical and Computer Engineering,

gray@ece.odu.edu

1 of 10

American Institute of Aeronautics and Astronautics

AIAA Guidance, Navigation and Control Conference and Exhibit
18 - 21 August 2008, Honolulu, Hawaii

AIAA 2008-6804

Copyright © 2008 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



time for the response process vector is considered. In their applications, a well-defined boundary for unsafe
failure exists.

This paper presents a dynamical system reliability definition for safety critical closed-loop systems that
use passive fault tolerant technologies. It is clear that if a closed-loop system is unstable in some sense
then it should be considered to be in the fail unsafe state before any of its responses exceed a safe region of
operation or while all its components are working as intended; unstable systems are intrinsically unreliable
from the systems point of view. Of course, safety critical closed-loop systems are designed to be stable within
their domain of attraction, which includes the expected failure rates and the associated modes of operation.
However, a stable closed-loop system may become unstable if a drastic change takes place such as the failure
of one or more components that prevent the system from maintaining stability, resulting in loss of control.
Stability can also be lost if the expected failure rates change due to the introduction of the safety critical
system into a harsh environment. This is analogous to stability of nonlinear systems, where the change of an
input can change the equilibria and stability properties. In this case, the random failures can be considered
to be an input. Since the failures occur randomly, mean square stability (MSS) of the closed-loop system is
analyzed. So, closed-loop systems that are not MSS or abruptly stop being MSS are in the fail unsafe state.
Systems with responses outside a safe region of operation are also in the fail unsafe state. This region can
be characterized with a cost function as done in Refs. 11, 12 or by specifying performance boundaries as in
Refs. 9, 10, 13. Thus, a necessary condition for system reliability is MSS. From a practical point of view, if
an abrupt change has taken place, a more general necessary condition for dynamical system reliability is the
existence of a reconfigurable control law to return operation to at least a fail safe state. In this paper, a
type of mean square stabilizability will be presented that makes it possible to determine if the closed-loop
has recovered. A relation between system reliability and stabilizability was first articulated in Ref. 14.

To analyze MSS of passive fault tolerant interconnected closed-loop systems, a methodology based on
Markov jump linear systems15 will be presented. If certain technical assumptions are satisfied then it is
possible to analyze MSS of an equivalent jump linear system driven by a homogeneous Markov process.
In this case, it is known that MSS implies stability in the mean, almost sure stability, and exponential
mean square stability.16, 17 For simplicity, in this paper only fault tolerance of the controller is considered.
Failures of each fault tolerant component will be characterized with independent homogeneous Markov chains
with only two states: not failed and failed. Failure of the interconnection of fault tolerant components is
characterized with a structure function.18 These models result in a closed-loop system realization that is
randomly switched. Since, in general, the switching process is not a homogenous Markov chain,19 a joint
process is introduced that results in an equivalent Markov jump linear system. For comparison of different
fault tolerant implementations, the MSS stability boundary is computed as a function of the transition
probability matrix parameters. The direct effect of faults in the communication system is not considered.
An investigation that takes this into account and analyzes its effect on a control system performance measure
is Ref. 20.

The rest of the paper is organized as follows. In Section II the fault tolerant architecture to be considered
is presented. The statistical nature of the stochastic processes associated with the interconnection of fault
tolerant components is presented in Section III. This section also presents an equivalent Markov jump linear
system that is suitable for stability analysis. The mean square stability definition and test as well as the
dynamical system reliability definition are introduced in Section IV. In Section V, the methodology is applied
to a simplified model of an AFTI-F16 aircraft for illustration.

II. Fault Tolerant Architecture

This section describes an N -Modular Redundant (NMR) implementation of a control law for a unity
feedback closed-loop system (see Figure 1). Let the underlying probability space be (Ω,F , Pr). Since stability
of the randomly switched sampled-data system is equivalent to the stability of a discretized realization,21 let
the controlled process have the following discretized state space realization

xp(k + 1) = Apxp(k) + Bpu(k)

yp(k) = Cpxp(k),
(1)

where xp(k) ∈ R
np is the plant’s state vector, yp(k) ∈ R

m is the plant’s output, Ap, Bp, and Cp are matrices
with appropriate dimensions. Boldfaced characters denote a random variable or process. The control law is
implemented in N Processing Elements (PE’s) followed by an NMR logic circuit that calculates the actual
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control command, u(k), sent to the actuators. The PE’s satisfy the following simplifying assumptions.

Assumption 1. Each PE is identical and runs the same nominal control law given by

xc(k + 1) = Acxc(k) + Bce(k)

y(k) = Ccxc(k),
(2)

where xc(k) ∈ R
nc is the controller’s state vector, w(k) ∈ R

m represents a random additive input pertur-
bation, e(k) = r(k) + w(k) − yp(k) is the controller’s input, r(k) ∈ R

m is a deterministic reference input,
y(k) ∈ R

m is the controller’s output, and Ac, Bc, and Cc are matrices with appropriate dimensions.

Assumption 2. Each PE belongs to a different fault containment region.

Assumption 3. Each PE is implemented in a fail silent control computer that includes self-checking such
that when an internal upset is detected, the PE stops transmitting data and broadcasts a failed message. The
NMR logic circuit is assumed not to fail. The fail silent detection is also assumed not to fail, that is, it has
100% coverage.

Assumption 4. The transition between failed and not failed states of each PE is characterized by a ho-
mogenous Markov chain {zi(k), k ∈ Z

+}, i = 1, . . . , N taking values in {0, 1}, where Z
+ denotes the non-

negative integers. The not failed state is denoted by 0 and the failed one by 1. The stochastic processes
z1(k), . . . , zN (k) are assumed to be independent.

r(k)
+

-

Aircraft yp(k)
NMR

Logic

PE

Controller N

PE

Controller 1

.

.

.

.

.

. u(k)
e(k)

z1(k)

zN(k)

zv(k)

y (k)1

y (k)N

w(k)

Figure 1. Block diagram of a safety critical closed-loop system

with an N-modular redundant controller architecture.

As seen in Figure 1, each PE con-
troller has the same input e(k). Let the
ideal output of the control law (2) at
time k be y(k). Then the output of the
i-th PE controller satisfies yi(k) = y(k)
when zi(k) = 0; otherwise, by Assump-
tion 3, there is no data present in its out-
put. At each time k, the random vari-
ables zi(k) are indicators of the event
{yi(k) 6= y(k)}, that is, the event that
{yi(k) is not correct}. Alternatively, the
random variable zi(k) is an indicator of
the availability of the i-th PE controller.
In Figure 1, the indicator random vari-
ables associated with the output of a de-
vice are denoted with dashed lines. The
NMR logic block characterizes the oper-
ation used to compute the control command u(k). In this paper, the NMR logic block satisfies the following
assumption.

Assumption 5. At each time k, the NMR logic circuit implements the following input/output relation

u(k) = gL

(
y1(k), . . . , yN (k)

)
,

where gL : {R
m}N → R

m with {R
m}N , R

m × · · · × R
m

︸ ︷︷ ︸

N times

. By Assumption 3, the mapping gL results in the

following simple assignment

u(k) =







y(k) : if there exists at least one i such that yi(k) = y(k),

− : otherwise

where the dash indicates that the NMR logic circuit was unable to determine a value for the control command.
The control command is undefined in this case.
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Assumption 5 simply says that because of the assumed 100% coverage in Assumption 3, only one PE
needs to be in operation as in a parallel interconnection of the PE’s. If the coverage assumption is relaxed,
the mapping gL could implement one of several possible voting algorithms such as majority or weighted
average.22–24 So, in general, the correctness of u(k) is characterized by a transformation of the random pro-
cesses indicating if each PE is working properly. This transformation, found from reliability block diagrams
or fault tree analysis, is called the structure function and is defined next.

Definition 1. A structure function, φ, for the fault tolerant interconnection of PE’s in Figure 1 is a mem-
oryless, binary-valued mapping φ : {0, 1}N → {0, 1} given by

zv(k) = φ(z(k)) =







0 : u(k) = y(k),

1 : u(k) is undefined,
(3)

where z(k) =
(
z1(k), . . . , zN (k)

)
.

In (3), zv(k) is the indicator random variable associated with u(k), the output of the NMR logic circuit.
The structure function for many interconnections is known.8 A general class of such interconnections are
referred to as α-out-of-N , where α PE’s need to function for correct operation of the interconnected system.
The specific case considered in this paper is a 1-out-of-N interconnected system.

The possible ambiguity caused by u(k) being undefined is resolved in practice in the actuators. Thus,
two types of actuators are considered: memoryless actuators and actuators with memory. The actuators
satisfy the following assumptions.

Assumption 6. Memoryless actuators assume a zero command when no data is received. The effective
control input seen by them is a function of zv(k):

u(k) = uzv(k)(k)

= (1 − zv(k))y(k).

Assumption 7. Actuators with memory belong to a class of smart actuators. When no data is received,
these actuators use the previous control command. The effective control input is

u(k) = uzv(k)(k)

= (1 − zv(k))y(k) + zv(k)y(k − 1).

Now it is possible to develop the dynamical closed-loop models that are needed to study MSS of this
class of fault tolerant closed-loop systems. A realization of the closed-loop system in Figure 1 is

xCL(k + 1) = Azv(k)xCL(k) + Bzv(k)(r(k) + w(k))

yCL(k) = Czv(k)xCL(k),
(4)

where y
CL

(k) = yp(k) and, for example, for the simplex architecture (N = 1) with memoryless actuators,

Azv(k) =







A0 =




Ap −BpCc

BcCp Ac



 : zv(k) = 0,

A1 =




Ap 0

0 0



 : zv(k) = 1,

and xCL(k) = [xT
p(k) x

T
c (k)]T ∈ R

n with n = np + nc. Only Azv(k) is given, since it is the only matrix
needed for stability analysis. When the actuators have memory, the closed-loop system can be augmented
with an additional state vector that remembers the previous value of the controller’s state vector. So, the
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state vector in (4) is xCL(k) = [xT
p(k) x

T
c (k) x

T
a(k)]T ∈ R

np+2nc , xa(k) = xc(k − 1), and

Azv(k) =







A0 =







Ap −BpCc 0

BcCp Ac 0

0 I 0







: zv(k) = 0,

A1 =







Ap 0 −BpCc

0 0 I

0 0 I







: zv(k) = 1.

The Azv(k) matrices can be derived in a similar way for other fault tolerant interconnections. The statistical
nature of z(k) and zv(k) will be characterized in the next section. A new joint process is introduced that
results in a Markov jump linear system realization equivalent to (4).

III. Markov Jump Linear Systems

The main goal of this section is to develop a Markov Jump Linear System (MJLS) realization of the
randomly switched system in (4). First, the statistical nature of z(k) is characterized in Lemma 1. Note
that the random processes z1(k), . . . , zN (k) are independent if the random variables at time k are mutually
independent for every k ∈ Z

+.

Lemma 1. Let z1(k), . . . , zN (k) be independent homogeneous Markov chains on a finite or countable state
space Ii and with transition probability matrices Πzi

, i = 1, . . . , N over the same probability space (Ω,F , Pr).
Then the joint process z(k) , (z1(k), . . . , zN (k)) is a homogeneous Markov chain with state space I1×· · ·×IN

and transition probability matrix
Πz , Πz1 ⊗ · · · ⊗ ΠzN

,

where ⊗ denotes the Kronecker product. The joint process, z(k), is irreducible and aperiodic if each of the
Markov chains, zi(k), satisfies these properties. Moreover, z(k) is recurrent nonnull if invariant distributions
exist for zi(k), i = 1, . . . , N .

Proof. This is a direct generalization of Lemma 7.19 in Ref. 25.

Even though the random process zv(k) in (3) is a memoryless, binary-valued function of z(k), a homo-
geneous Markov process, zv(k) is not in general a homogeneous Markov process.19, 26, 27 To facilitate the
MSS analysis of the closed-loop system, an augmented joint process is introduced and shown to be Markov
and homogeneous.

Theorem 1. Let z1(k), . . . , zN (k) be independent homogeneous Markov chains on {0, 1} with transition
probability matrices Πzi

, i = 1, . . . , N . For each k ∈ Z
+ let z(k) , (z1(k), . . . , zN (k)) and let zv(k) be given

by (3). Then the joint process ρ(k) , (z(k), zv(k)) is a homogeneous Markov chain, and its state space can
be reduced to a proper subset of {0, 1}N+1 such that its transition probability matrix satisfies Πρ = Πz. The
joint process, ρ(k) is ergodic if invariant distributions exist for zi(k) (i = 1, . . . , N), and they are irreducible
and aperiodic.

Proof. By Lemma 1, z(k) is a Markov chain with transition probability matrix given by Πz. By Theo-
rems 3.2–3.4 in Ref. 28, the following σ-algebra relationship holds σ(ρ(k), . . . , ρ(0)) = σ(z(k), . . . , z(0)),
since ρ(k) = (z(k), φ(z(k))), and φ is a binary-valued function of z(k). To simplify the notation, for any
k ∈ Z

+, denote the events {ρ(k) = ρ(k)}, {ρ(k − 1) = ρ(k − 1), . . . , ρ(0) = ρ(0)}, and {z(k − 1) =
z(k − 1), . . . , z(0) = z(0)} by {ρ(k)}, {ρ(k − 1), . . . , ρ(0)}, and {z(k − 1), . . . , z(0)}, respectively. Since φ is
a memoryless mapping, there is a one-to-one mapping between ρ(k) and z(k). Thus the number of states
that ρ(k) can take with non-zero probability is the same as the number of states z(k) can assume, that is,
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2N . Thus, Pr
{(

z(k), φ(z(k))
)}

= Pr
{
z(k)

}
. Now, since z(k) is Markov

Pr
{
ρ(k)|{ρ(k − 1), . . . , ρ(0)}

}

= Pr
{
(z(k), φ(z(k)))|{z(k − 1), . . . , z(0)}

}

= Pr
{
z(k)|{z(k − 1)}

}

= Pr
{
ρ(k)|{ρ(k − 1)}

}
.

Therefore, ρ(k) is Markov, and it has the same transition probability matrix as z(k). Finally, since ρ(k) is
completely characterized by z(k), Lemma 1 also determines whether it is irreducible, aperiodic, and recurrent
nonnull and, hence, whether it is ergodic or not. Note that recurrent states in a Markov chain with finite
states can only be nonnull.

The Markov chain ρ(k) can be used to define the following MJLS

xCL(k + 1) = Aρ(k)xCL(k) + Bρ(k)(r(k) + w(k))

yCL(k) = Cρ(k)xCL(k),
(5)

which is selected to be model equivalent to the randomly switched system in (4), that is, for each k ∈ Z
+

Aρ(k) ≡ Azv(k), Bρ(k) ≡ Bzv(k), and Cρ(k) ≡ Czv(k).
29 Therefore, if (4) and (5) have the same initial

conditions and input processes, their state and output processes will be the same.
The next section reviews MSS for MJLS and presents definitions for mean square stabilizability and

dynamical system reliability.

IV. MSS and Dynamical System Reliability

This section starts with a summary of a well-known necessary and sufficient mean square stability con-
dition for a class of MJLS. An in-depth analysis can be found in Ref. 15.

Consider the following MJLS

x(k + 1) = Aρ(k)x(k) + Bρ(k)w(k), x(0) = x0, (6)

where x(k) ∈ R
n; ρ(k) is a homogeneous, discrete-time Markov chain that takes values in the finite set

Ilρ = {0, . . . , lρ − 1}; Ai ∈ R
n×n for all i ∈ Ilρ ; and x(0) is a random vector with finite second moment that

is independent of ρ(k) for k ≥ 0. Also, let Πρ = [πij ], π(k), and π(0) = π0 represent the transition probability
matrix, the distribution at time k, and the initial distribution of ρ(k), respectively. When w(k) 6= 0, the
following extra assumption is needed.

Assumption 8. When (6) is not autonomous, i.e., w(k) 6= 0 for some k ≥ 0, assume that ρ(k) is ergodic
(i.e., it has a single ergodic class), that the processes ρ(k) and w(k) are independent of each other, and w(k)
is independent of the initial state x(0) for k ≥ 0. Furthermore, w(k) is considered to be a second-order,
independent, wide sense stationary sequence of random variables.

The following stability definition is standard in the literature.

Definition 2. The equilibrium point at 0 of system (6) (or simply, system (6)) is called mean square stable
if there exists a nonnegative constant α such that for every value of the initial condition x0 and every initial
distribution π0 of ρ(k) it follows that limk→∞ E{‖x(k)‖2} = α. If w(k) = 0 for k ≥ 0 then α = 0.

The main mean square stability test for an MJLS follows.15

Theorem 2. System (6) is mean square stable if and only if the spectral radius of A is less than one, where

A , (ΠT

ρ ⊗ In2 ) diag(A0 ⊗ A0, . . . , Alρ−1 ⊗ Alρ−1).

Note that whenever (6) is not autonomous, Assumption 8 is needed to ensure the uniqueness of the limit

lim
k→∞

E{‖x(k)‖2}

in Definition 2. Ergodicity of z(k), however, is not required when w(k) = 0 for all k ≥ 0.15, 16

From the control point of view it is important to determine if there exists a reconfigurable control law
after a failure or failures occur. Mean square stabilizability for the class of systems presented here is defined
next.
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Definition 3. The aircraft dynamics in (1) are said to be mean square stabilizable if the interconnection
of N PE’s running the control law in (2) stabilizes (1) in the mean square sense with the available control
input uρ(k)(k).

Mean square stabilizability will be denoted by MSSρ(k) to emphasize the dependence on the working
interconnected fault tolerant components. Next a dynamical system reliability definition is introduced.
First, a standard definition for the reliability function of a fault tolerant component is given. It is followed
by the definition of a reliability function for an interconnected system of fault tolerant components.

Definition 4. Let the random variable qi be the time to failure of the i-th fault tolerant component that
starts operation at time t = 0, i = 1, . . . , N . The reliability function of the i-th component is

Ri(t) , Pr{qi > t} = 1 − Fi(t),

where Fi(t) = Pr{qi ≤ t} is the distribution of the continuous-time random variable qi and t ∈ R
+ the

nonnegative reals.

The closed-loop system in Figure 1 is a sampled-data system with continuous-time aircraft dynamics and
a digital controller implementation. Let T denote the sample period. Note that for every t ∈ R

+ there exists
a k ∈ Z

+, corresponding to the previous sample instant, such that

kT ≤ t < (1 + ∆)kT,

where 0 < ∆ < 1. For fault tolerant sampled-data systems, the conditional reliability may be more relevant
if it is known that the component was working at kT . This conditional reliability satisfies

Ri(∆kT, kT ) ,
Ri((1 + ∆)kT )

Ri(kT )
.

If the component lifetimes are exponentially distributed then it is known that Ri(∆kT, kT ) = Ri(∆kT ).8

Definition 5. The reliability function of an interconnected system of N fault tolerant components is

R(t) , Pr{q > t} = 1 − F (t),

where q is the lifetime of the fault tolerant system, and F (t) is its distribution function.

The lifetime of the interconnected system, q, can be found from the lifetime of the components, that is,
there is a mapping that depends on the structure of the interconnection from (q1, . . . , qN ) to q.

For a dynamical closed-loop system the following definition of reliability integrates the dynamical system
and the fault tolerant system.

Definition 6. The dynamical system reliability is

RS(t) = Pr{q > t}1{MSSρ(k)},

where q is the time to failure of the interconnection of fault tolerant components, and 1{·} is the indicator
of the event {MSSρ(k)} that the aircraft dynamics are mean square stabilizable with the nominal controller
and the operational fault tolerant interconnected system.

This is the probability of the time to failure of the interconnection of the fault tolerant components times
the indicator of the event that there exists a mean square stabilizing control law with working components.

V. Example

This section presents a simulation study to illustrate the effect of several fault tolerant architecture choices
on the MSS and the dynamical system reliability. The example uses the simplified longitudinal dynamics of
the AFTI-F16 aircraft given in Ref. 30. The aircraft model has four states (change in speed, angle of attack,
pitch rate, and pitch angle). In this paper, it is controlled by an observer-based digital regulator given by

xc(k + 1) = Apxc(k) + Bpu(k) + F (yp(k) − Cpxc(k))

yc(k) = xc(k),
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Figure 2. Plots of the stability boundaries for the AFTI-F16 example. In each case the stable region is above

the boundary.

where u(k) = r(k) − Kxc(k), and F is the observer gain matrix. Here xc(k) = x̂p(k) is an estimate of
the aircraft’s state vector. The sampling period was set to T = 0.004 sec., the nominal continuous-time
closed-loop poles were placed at {−0.2 ± j0.9798,−0.01 ± j0.0995}, and the observer’s discrete-time poles
were chosen to be five times faster than the plant’s closed-loop poles.

The observer-based digital regulator was implemented in 1 or 2 or 3 PE’s. The failures of each PE were
characterized with independent homogenous Markov chains with two states: 0 (operational) and 1 (failure)
with transition probability matrix

Π =

[

p00 1 − p00

1 − p11 p11

]

,

where p00 is the probability that the PE stays in the operational mode and p11 the probability of staying
in the failure mode. To complete the description of the fault tolerant interconnected system, a 1-out-of-N
NMR logic circuit, satisfying the assumptions in Section II was implemented. For each number of PE’s, a
memoryless actuator and actuator with memory case is considered, resulting in six cases. For these cases,
no NMR logic failures are considered.
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Figure 3. The dynamical system reliability plots for 1-

out-of-N interconnections for N = 1, 2, 3. The dynamical

system ceases to be stabilizable when λt = π.

Now that the closed-loop system and the fault
tolerant interconnected systems have been defined,
Theorem 2 is used to sweep the transition proba-
bility parameters (p00 and p11) to find the stability
boundaries for each architecture choice. The results
are shown in Figure 2, which gives the tradeoff be-
tween the persistence of each PE staying in the op-
erational state (p00) vs. the persistence of each PE
staying in a failure mode (p11). According to Fig-
ure 2, the best of the considered architectures is the
1-out-of-3 one with actuators with memory, since it
has the largest stability region. The worst architec-
ture is the simplex one with memoryless actuators.
The stability boundaries corresponding to the other
architectures fall in between as intuitively expected.

To illustrate the use of the dynamical system re-
liability, note that for a 1-out-of-N interconnection
of fault tolerant components, the reliability function
of the interconnected system is

R(t) = 1 −

N∏

i=1

(1 − Ri(t)),

where Ri(t), i = 1, . . . , N is the reliability function of the i-th component.8 If the component reliabilities
are the same and given by Ri(t) = e−λt, and if the closed-loop cannot be stabilized after an abrupt change
at λt = π, then an illustration of the dynamical system reliability is given in Figure 3. For other α-out-of-N
interconnections or when the coverage of the failures is not 100%, it is expected that the dynamical system
reliability functions will have different abrupt jumps to zero.

VI. Conclusions

In this paper, a methodology to analyze the MSS of a class of fault tolerant computer control systems
was presented. The main contribution is the characterization of the joint process used to drive the model
equivalent Markov jump linear system. It was shown that it is a homogeneous Markov process with the
same transition probability matrix as the joint process of the N indicator random variables characterizing
the availability of the PE’s. Current research directions include determining the conditions under which the
2-state indicator random variable zv(k) can be used to drive another model equivalent Markov jump linear
system. By using zv(k) instead of ρ(k), tests with much lower dimensional matrices can be used for MSS
and control system performance. Another contribution of this paper is the introduction of a mean square
stabilizability condition used to define a new dynamic system reliability function. Future work will show
how to use this function in optimization of control systems for improved reliability.
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