150 research outputs found

    Foraging habitat selection of shrubland bird community in tropical dry forest

    Get PDF
    Habitat loss due to increasing anthropogenic disturbance is the major driver for bird population declines across the globe. Within the Eastern Ghats of India, shrubland bird communities are threatened by shrinking of suitable habitats due to increased anthropogenic disturbance and climate change. The development of an effective habitat management strategy is hampered by the absence of data for this bird community. To address this knowledge gap, we examined foraging sites for 14 shrubland bird species, including three declining species, in three study areas representing the shrubland type of forest community in the Eastern Ghats. We recorded microhabitat features within an 11 m radius of observed foraging points and compared these data with similar data from random plots. We used chi-square to test the association between plant species and bird species for sites where they were observed foraging. We observed significant differences between foraging sites of all the study species and random plots, thus indicating selection for foraging habitat. Using linear discriminant analysis, we found that the microhabitat features important for the bird species were shrub density, vegetational height, vertical foliage stratification, grass height, and percent rock cover. Our results show that diet guild and foraging strata influence the foraging microhabitat selection of a species (e.g., ground-foraging species differed significantly from other species). Except for two species, all focal birds were associated with at least one plant species. The plant-bird association was based on foraging, structural, or behavioral preferences. Several key factors affecting foraging habitat such as shrub density can be actively managed at the local scale. Strategic and selective harvesting of forest products and a spatially and temporally controlled livestock grazing regime may allow regeneration of scrubland and create conditions favorable to birds

    Morphological Study of Insoluble Organic Matter Residues from Primitive

    Get PDF
    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms

    Comparison of the Organic Composition of Cometary Samples with Residues Formed from the UV Irradiation of Astrophysical Ice Analogs

    Get PDF
    The NASA Stardust mission successfully collected material from Comet 81P/Wild 2 [1], including authentic cometary grains [2]. X-ray absorption near-edge structure (XANES) spectroscopy analysis of these samples indicates the presence of oxygen-rich and nitrogen-rich organic materials, which contain a broad variety of functional groups (carbonyls, C=C bonds, aliphatic chains, amines, arnides, etc.) [3]. One component of these organics appears to contain very little aromatic carbon and bears some similarity to the organic residues produced by the irradiation of ices of interstellar/cometary composition, Stardust samples were also recently shown to contain glycine, the smallest biological amino acid [4]. Organic residues produced froth the UV irradiation of astrophysical ice analogs are already known to contain a large suite of organic molecules including amino acids [5-7], amphiphilic compounds (fatty acids) [8], and other complex species. This work presents a comparison between XANES spectra measured from organic residues formed in the laboratory with similar data of cometary samples collected by the Stardust missio

    Vaccines against toxoplasma gondii : challenges and opportunities

    Get PDF
    Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge

    Tamoxifen-elicited uterotrophy: cross-species and cross-ligand analysis of the gene expression program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tamoxifen (TAM) is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM) which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level <it>in vivo</it>.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge.</p> <p>Results</p> <p>A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE) in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns.</p> <p>Conclusion</p> <p>Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.</p

    In Vitro and In Silico Analyses of the Inhibition of Human Aldehyde Oxidase by Bazedoxifene, Lasofoxifene, and Structural Analogues

    Get PDF
    Aldehyde oxidase (AOX1) is a molybdo-flavoprotein and has emerged as a drug-metabolizing enzyme of potential therapeutic importance because drugs have been identified as AOX1 substrates. Selective oestrogen receptor modulators (SERM), which are drugs used to treat and prevent various conditions, differentially inhibit AOX1 catalytic activity. Tamoxifen, raloxifene, and nafoxidine are selective oestrogen receptor modulators (SERMs) reported to inhibit the catalytic activity of human aldehyde oxidase 1 (AOX1). How these drugs interact with AOX1 and whether other SERMs inhibit this drug-metabolizing enzyme are not known. Therefore, a detailed in vitro and in silico study involving parent drugs and their analogues was conducted to investigate the effect of specific SERMs, particularly acolbifene, bazedoxifene, and lasofoxifene on AOX1 catalytic activity, as assessed by carbazeran 4-oxidation, an AOX1-selective catalytic marker. The rank-order in the potency (based on IC50 values) of AOX1 inhibition by SERMs was raloxifene > bazedoxifene ~ lasofoxifene > tamoxifen > acolbifene. Inhibition of liver cytosolic AOX1 by bazedoxifene, lasofoxifene, and tamoxifen was competitive, whereas that by raloxifene was noncompetitive. Loss of 1-azepanylethyl group increased the inhibitory potency of bazedoxifene, whereas the N-oxide group decreased it. The 7-hydroxy group and the substituted pyrrolidine ring attached to the tetrahydronaphthalene structure contributed to AOX1 inhibition by lasofoxifene. These results are supported by molecular docking simulations in terms of predicted binding modes, encompassing binding orientation and efficiency, and analysis of key interactions, particularly hydrogen bonds. The extent of AOX1 inhibition by bazedoxifene was increased by estrone sulfate and estrone. In summary, SERMs differentially inhibited human AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contributed to AOX1 inhibition, whereas those of acolbifene rendered it considerably less susceptible to AOX1 inhibition. Overall, our novel biochemical findings and molecular docking analyses provide new insights into the interaction between SERMs and AOX1. Structural features of bazedoxifene and lasofoxifene contribute to AOX1 inhibition, whereas those of acolbifene render it considerably less susceptible to AOX1 inhibition. Our novel biochemical findings, together with molecular docking analyses, provide new insights into the differential inhibitory effect of SERMs on the catalytic activity of human AOX1, how SERMs bind to AOX1, and increase our understanding of the AOX1 pharmacophore in the inhibition of AOX1 by drugs and other chemicals

    Selective estrogen receptor modulators inhibit growth and progression of premalignant lesions in a mouse model of ductal carcinoma in situ

    Get PDF
    INTRODUCTION: Ductal carcinoma in situ (DCIS) is a noninvasive premalignant lesion and is considered a precursor to invasive carcinoma. DCIS accounts for nearly 20% of newly diagnosed breast cancer, but the lack of experimentally amenable in vivo DCIS models hinders the development of treatment strategies. Here, we demonstrate the utility of a mouse transplantation model of DCIS for chemoprevention studies using selective estrogen receptor modulators (SERMs). This model consists of a set of serially transplanted lines of genetically engineered mouse mammary intraepithelial neoplasia (MIN) outgrowth (MIN-O) tissue that have stable characteristics. We studied the ovarian-hormone-responsiveness of one of the lines with a particular focus on the effects of two related SERMs, tamoxifen and ospemifene. METHODS: The estrogen receptor (ER) status and ovarian-hormone-dependence of the mouse MIN outgrowth tissue were determined by immunohistochemistry and ovarian ablation. The effects of tamoxifen and ospemifene on the growth and tumorigenesis of MIN outgrowth were assessed at 3 and 10 weeks after transplantation. The effects on ER status, cell proliferation, and apoptosis were studied with immunohistochemistry. RESULTS: The MIN-O was ER-positive and ovarian ablation resulted in reduced MIN-O growth and tumor development. Likewise, tamoxifen and ospemifene treatments decreased the MIN growth and tumor incidence in comparison with the control (P < 0.01). Both SERMs significantly decreased cell proliferation. Between the two SERM treatment groups, there were no statistically significant differences in MIN-O size, tumor latency, or proliferation rate. In contrast, the ospemifene treatment significantly increased ER levels while tamoxifen significantly decreased them. CONCLUSION: Tamoxifen and ospemifene inhibit the growth of premalignant mammary lesions and the progression to invasive carcinoma in a transplantable mouse model of DCIS. The inhibitory effects of these two SERMs are similar except for their effects on ER modulation. These differences in ER modulation may suggest different mechanisms of action between the two related SERMs and may portend different long-term outcomes. These data demonstrate the value of this model system for preclinical testing of antiestrogen or other therapies designed to prevent or delay the malignant transformation of premalignant mammary lesions in chemoprevention

    Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

    Get PDF
    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change
    • …
    corecore