369 research outputs found

    A hybrid radiation detector for simultaneous spatial and temporal dosimetry

    Get PDF
    In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation

    Predisposition to Obesity: Should We Target Those Most Susceptible?

    Get PDF
    Obesity prevention should remain a priority, even if there is some suggestion that the epidemic may presently have reached a stable level. However, previous interventions have not been effective in preventing overweight and obesity, and at the same time studies suggest that some subgroups are more predisposed to future obesity. The purpose of this paper is to review interventions on obesity prevention published during the past year, and to examine if interventions targeting predisposed groups or individuals seem more efficient in preventing obesity than studies targeting general populations. Among 15 identified studies, 7 targeted predisposed children or adolescents. More of the studies targeting predisposed individuals were able to show significant effects than the studies targeting general populations. Most studies targeting predisposed defined the predisposition based on ethnicity or socioeconomic status. Thus, we may be more successful in preventing obesity when targeting predisposed individuals, but more studies are needed before a firm conclusion can be drawn

    Explosive Nucleosynthesis: What we learned and what we still do not understand

    Full text link
    This review touches on historical aspects, going back to the early days of nuclear astrophysics, initiated by B2^2FH and Cameron, discusses (i) the required nuclear input from reaction rates and decay properties up to the nuclear equation of state, continues (ii) with the tools to perform nucleosynthesis calculations and (iii) early parametrized nucleosynthesis studies, before (iv) reliable stellar models became available for the late stages of stellar evolution. It passes then through (v) explosive environments from core-collapse supernovae to explosive events in binary systems (including type Ia supernovae and compact binary mergers), and finally (vi) discusses the role of all these nucleosynthesis production sites in the evolution of galaxies. The focus is put on the comparison of early ideas and present, very recent, understanding.Comment: 11 pages, to appear in Springer Proceedings in Physics (Proc. of Intl. Conf. "Nuclei in the Cosmos XV", LNGS Assergi, Italy, June 2018

    Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    Get PDF
    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation.McGovern Institute for Brain Research at MITNational Institutes of Health (U.S.) ((NIH grant 1-RC1-NS068103-01)National Institutes of Health (U.S.) (NIH grant R01-MH084966)Roberto Rocca Education Program (Fellowship)Massachusetts Institute of Technology. Undergraduate Research Opportunities Program (Fellowship)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBIN04H5AS)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBLA03FLJC)Italy. Ministero dell'istruzione, dell'università e della ricerca (FIRB n. RBAP10L8TY

    Effects of sulfate starvation on agar polysaccharides of Gracilaria species (Gracilariaceae, Rhodophyta) from Morib, Malaysia

    Get PDF
    The effects of sulfate starvation on the agar characteristics of Gracilaria species was investigated by culturing two red algae from Morib, Malaysia, Gracilaria changii and Gracilaria salicornia in sulfate-free artificial seawater for 5 days. The seaweed samples were collected in October 2012 and March 2013, periods which have significant variation in the amount of rainfall. The agar yields were shown to be independent of sulfate availability, with only 0.60–1.20 % increment in treated G. changii and 0.31–1.40 % increment in treated G. salicornia while their gel strengths did not increase significantly (approximately 5–7 %) after sulfate starvation for both species. The gelling and melting temperatures did not vary between control and treated samples from both species, except for the treated G. changii collected in March 2013. The gel syneresis index of G. salicornia collected in March 2013 increased significantly after sulfate deprivation. Sulfate starvation introduced some variations in the content of 3, 6-anhydrogalactose and total sulfate esters, but the changes did not have a pronounced effect on the physical properties of agar

    Circadian Preference Modulates the Neural Substrate of Conflict Processing across the Day

    Get PDF
    Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions

    A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean

    Get PDF
    Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species

    Retention of Memory through Metamorphosis: Can a Moth Remember What It Learned As a Caterpillar?

    Get PDF
    Insects that undergo complete metamorphosis experience enormous changes in both morphology and lifestyle. The current study examines whether larval experience can persist through pupation into adulthood in Lepidoptera, and assesses two possible mechanisms that could underlie such behavior: exposure of emerging adults to chemicals from the larval environment, or associative learning transferred to adulthood via maintenance of intact synaptic connections. Fifth instar Manduca sexta caterpillars received an electrical shock associatively paired with a specific odor in order to create a conditioned odor aversion, and were assayed for learning in a Y choice apparatus as larvae and again as adult moths. We show that larvae learned to avoid the training odor, and that this aversion was still present in the adults. The adult aversion did not result from carryover of chemicals from the larval environment, as neither applying odorants to naïve pupae nor washing the pupae of trained caterpillars resulted in a change in behavior. In addition, we report that larvae trained at third instar still showed odor aversion after two molts, as fifth instars, but did not avoid the odor as adults, consistent with the idea that post-metamorphic recall involves regions of the brain that are not produced until later in larval development. The present study, the first to demonstrate conclusively that associative memory survives metamorphosis in Lepidoptera, provokes intriguing new questions about the organization and persistence of the central nervous system during metamorphosis. Our results have both ecological and evolutionary implications, as retention of memory through metamorphosis could influence host choice by polyphagous insects, shape habitat selection, and lead to eventual sympatric speciation

    Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis

    Get PDF
    For marine meta-populations with source-sink dynamics knowledge about genetic connectivity is important to conserve biodiversity and design marine protected areas (MPAs). We evaluate connectivity of a Mediterranean sessile species, Pinna nobilis. To address a large geographical scale, partial sequences of cytochrome oxidase I (COI, 590 bp) were used to evaluate phylogeographical patterns in the Western Mediterranean, and in the whole basin using overlapping sequences from the literature (243 bp). Additionally, we combined (1) larval trajectories based on oceanographic currents and early life-history traits and (2) 10 highly polymorphic microsatellite loci collected in the Western Mediterranean. COI results provided evidence for high diversity and low inter-population differentiation. Microsatellite genotypes showed increasing genetic differentiation with oceanographic transport time (isolation by oceanographic distance (IBD) set by marine currents). Genetic differentiation was detected between Banyuls and Murcia and between Murcia and Mallorca. However, no genetic break was detected between the Balearic populations and the mainland. Migration rates together with numerical Lagrangian simulations showed that (i) the Ebro Delta is a larval source for the Balearic populations (ii) Alicante is a sink population, accumulating allelic diversity from nearby populations. The inferred connectivity can be applied in the development of MPA networks in the Western Mediterranean.Spanish Ministry of Economy and Competitiveness [CTM2009-07013]; Ramon y Cajal Fellowship [RYC2014-14970]; Conselleria d'Innovacio, Recerca i Turisme of the Balearic Government; Spanish Ministry of Economy, Industry and Competitiveness IFCT [IF/00998/2014]; FCT [SFRH/BPD/63703/2009, SFRH/BPD/107878/2015, EXCL/AAG-GLO/0661/2012]; National Science Foundation [OCE-1419450]; Albert II of Monaco Foundationinfo:eu-repo/semantics/publishedVersio

    Minimizing early relapse and maximizing treatment outcomes in hormone-sensitive postmenopausal breast cancer: efficacy review of AI trials

    Get PDF
    Breast cancer is one of the leading causes of cancer-related deaths in women. Regardless of prognosis, all women with breast cancer are at risk for early recurrence. Nearly 50% of early recurrences occur within 5 years of surgery, and they peak at 2 years after surgery in women treated with adjuvant tamoxifen. Most early recurrences are distant metastases, which strongly correlate with increased mortality. Treatments that mitigate the risk of early distant metastases (DM) are, therefore, likely to improve overall survival in women with early breast cancer (EBC). Aromatase inhibitors (AIs)—anastrozole, letrozole, and exemestane—have been investigated as alternatives to tamoxifen for adjuvant treatment of hormone receptor-positive (HR+) EBC in postmenopausal women (PMW). AIs are better at minimizing risk of early relapse compared with tamoxifen. However, it is not clear if preferential use of AIs over tamoxifen will benefit all PMW with HR+ EBC. The ability to subtype HR+ breast cancer on the basis of biomarkers predictive of response to AIs and tamoxifen would likely be key to determining the most beneficial hormonal treatment within patient subpopulations, but this process requires thorough investigation. Until then, adjuvant therapies that provide the greatest reduction in risk of DM should be considered for all PMW with HR+ EBC. This article reviews the clinical trials of AI adjuvant therapies for hormone-sensitive breast cancer, particularly in the context of how they compare with tamoxifen in minimizing the risk of relapse, occurrence of DM, and breast cancer-related deaths
    corecore