156 research outputs found
When is a multidisciplinary approach required in management of intracranial complications of sinonasal inflammatory disorders?
Intracranial complications of sinonasal inflammatory disorders are relatively unusual but can cause significant morbidity and mortality. They often occur in patients with comorbid disorders and immunocompromised but also people without risk factors can be affected. Intracranial complications of acute rhinosinusitis are rare, probably due to oral antibiotics availability, but are less predictable as they often occur in immunocompetent patients without comorbidity. Their management requires a multidisciplinary approach to plan and customize the therapeutic treatment. Intracranial complications of chronic rhinosinusitis are more predictable as they occur often in immunocompromised patient with particularly risk factors. For this reason, a multidisciplinary approach it’s important for treatment and mostly for prevention. The aim of this paper is to present an overview of different multidisciplinary management of intracranial complications of sinonasal inflammatory disorders according to their etiology and severity
Gitelman syndrome disclosed by calcium pyrophosphate deposition disease: Early diagnosis by ultrasonographic study
Gitelman's syndrome is a rare autosomal-recessive tubular disorder characterized by hypomagnesemia and hypocalciuria associated to hypokalemia. The clinical spectrum is wide and usually characterized by chronic fatigue, cramps, muscle weakness and paresthesiae. We describe a case of a 43 year-old male patient with early onset of knee arthritis and no other symptoms. Ultrasound revealed diffuse and confluent hyperechoic deposits in cartilage, fibrocartilage of the menisci and synovium and calcium pyrophosphate crystals were observed in the synovial fluid of the knee. The concomitant presence of hypomagnesemia, hypocalciuria and hypokalemia made clear the diagnosis of Gitelman's syndrome associated with chondrocalcinosis
Psychometric Properties and Validation of the Italian Version of Ages & Stages Questionnaires Third Edition
: Objectives: The Ages & Stages Questionnaires Third Version (ASQ-3) identifies the risk of developmental delay in children aged 1 to 66 months. The aim of this study was to determine a reliable and valid instrument for the Italian population to enable the screening of children's development. Methods: Data from 2278 Italian children (age range: 1-66 months) were used to evaluate item discrimination power using the corrected item-total correlation. Internal consistency was analyzed by Cronbach's alpha scores and a Confirmative Factor Analysis was conducted to test the factor structure of the test. Data were also collected to examine the ASQ-3 test-retest reliability and concurrent validity, which was investigated using the Griffiths Scales of Child Development, Third Edition, the Peabody Developmental Motor Scale, Second Edition, and the Developmental Profile, Third Edition tools. In order to evaluate discriminant validity, differences between typical development children and several clinical groups have been performed. Finally, two different cut-off scores have been proposed. Results: The results showed that the questionnaires are composed of high-quality items; the original factor structure has been confirmed and strong Pearson product-moment correlation coefficients between the overall and the total for each domain (ranging from 0.73 to 0.88). The Italian version of the ASQ-3 had adequate internal consistency and a strong agreement between observations with two weeks' intervals. Moreover, the test showed a high discriminant validity due to the possibility of fully discriminating between typical development children and several clinical groups. Finally, two different cut-off scores have been identified using ROC curves in order to have a screening and a diagnostic cut-off value. Conclusion: This study evaluated the psychometric properties of the Italian adaptation of ASQ-3 questionnaires. We demonstrated the validity of the ASQ-3 and determined new cut-off scores for Italian children. Early identification and accurate assessment are important starting points to better understand and anticipate the needs of children and their link to services
Longitudinal study of clinical and neurophysiological features in essential tremor
Background and purpose: Essential tremor (ET) is a common and heterogeneous disorder characterized by postural/kinetic tremor of the upper limbs and other body segments and by non-motor symptoms, including cognitive and psychiatric abnormalities. Only a limited number of longitudinal studies have comprehensively and simultaneously investigated motor and non-motor symptom progression in ET. Possible soft signs that configure the ET-plus diagnosis are also under-investigated in follow-up studies. We aimed to longitudinally investigate the progression of ET manifestations by means of clinical and neurophysiological evaluation. Methods: Thirty-seven ET patients underwent evaluation at baseline (T0) and at follow-up (T1; mean interval +/- SD = 39.89 +/- 9.83 months). The assessment included the clinical and kinematic evaluation of tremor and voluntary movement execution, as well as the investigation of cognitive and psychiatric disorders. Results: A higher percentage of patients showed tremor in multiple body segments and rest tremor at T1 as compared to T0 (all p-values < 0.01). At T1, the kinematic analysis revealed reduced finger-tapping movement amplitude and velocity as compared to T0 (both p-values < 0.001). The prevalence of cognitive and psychiatric disorders did not change between T0 and T1. Female sex, absence of family history, and rest tremor at baseline were identified as predictive factors of worse disease progression. Conclusions: ET progression is characterized by the spread of tremor in multiple body segments and by the emergence of soft signs. We also identified possible predictors of disease worsening. The results contribute to a better understanding of ET classification and pathophysiology
Application of structure from motion photogrammetry to multi-temporal geomorphological analyses: case studies from Italy and Spain
The study of the geomorphological evolution of landscapes is one of the most important tasks needed for assessing the natural and man-made geohazards and risks affecting a territory. In the last two decades, instrumental and computational advances have allowed the development of effective remote sensing methodologies, such as those based on Synthetic Aperture Radar (SAR) Interferometry or change detection techniques (Tomás & Li, 2017). These techniques have enhanced the possibilities of making geomorphic observations and modelling. Specifically, Earth Observations (EO) techniques using airborne or satellite platforms have increased the ability to map and monitor geomorphological processes. In such a framework, historical landscape data, such as those available from aerial photographs taken since the early 1940s, are key instruments for studying the geomorphological evolution of a territory. In this work, the application of the Structure from Motion (SfM) technique to analyse the geomorphological evolution of sample areas by historical aerial photos is tested, examined, and discussed. Towards this aim, multi-temporal analysis by means of three-dimensional (3D) land models of four test areas reconstructed through the application of the SfM technique using available aerial images was performed. Although it is well known that SfM requires a considerable number of digital images and a significant overlap between them, the challenge of this approach was to reconstruct 3D land models using a reduced set of analogical aerial photos for satisfactory results. The resulting 3D reconstructions succeeded in recognizing and studying the geomorphological evolution of the test areas, represented by: a) a region in southern Italy affected by landslides; b) a territory in central Italy affected by badland-type intense erosional phenomena; c) a sector in northwestern Italy with open-pit mining activity; and d) a coastal zone affected by changes in its coastline. Despite some disadvantages that arose during the application of the SfM technique, the proposed methodology has been shown to be useful for geomorphological analysis. This can be considered an alternative to the use of analogical and digital stereoscopic techniques to recognize geomorphological shapes and analyse Earth surface evolution and the effects of different anthropic activities.Part of this work was supported by the University of Alicante (vigrob-157 Project, GRE14-04 Project and GRE15-19 Project), the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI) and the European Funds for Regional Development (FEDER) (projects TEC2017-85244-C2-1-P, ESP2013-47780-C2-2-R and TIN2014-55413-C2-2-P) and the Spanish Ministry of Education, Culture and Sport (project PRX17/00439)
Extended Endoscopic Endonasal Approaches for Cerebral Aneurysms: Anatomical, Virtual Reality and Morphometric Study
Introduction. The purpose of the present contribution is to perform a detailed anatomic and virtual reality three-dimensional stereoscopic study in order to test the effectiveness of the extended endoscopic endonasal approaches for selected anterior and posterior circulation aneurysms. Methods. The study was divided in two main steps: (1) simulation step, using a dedicated Virtual Reality System (Dextroscope, Volume Interactions); (2) dissection step, in which the feasibility to reach specific vascular territory via the nose was verified in the anatomical laboratory. Results. Good visualization and proximal and distal vascular control of the main midline anterior and posterior circulation territory were achieved during the simulation step as well as in the dissection step (anterior communicating complex, internal carotid, ophthalmic, superior hypophyseal, posterior cerebral and posterior communicating, basilar, superior cerebellar, anterior inferior cerebellar, vertebral, and posterior inferior cerebellar arteries). Conclusion. The present contribution is intended as strictly anatomic study in which we highlighted some specific anterior and posterior circulation aneurysms that can be reached via the nose. For clinical applications of these approaches, some relevant complications, mainly related to the endonasal route, such as proximal and distal vascular control, major arterial bleeding, postoperative cerebrospinal fluid leak, and olfactory disturbances must be considered
Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy)
Landslides are one of the most relevant geohazards worldwide, causing direct and indirect costs and fatalities. Italy is one of the countries most affected by mass movements, and the Molise region, southern Italy, is known to be susceptible to erosional processes and landslides. In January 2003, a landslide in the municipality of Agnone, in the Colle Lapponi-Piano Ovetta (CL-PO) territory, occurred causing substantial damage to both structures and civil infrastructure. To investigate the evolution of the landslide-affected catchment over approximately one century, different data were taken into account: (i) literature information at the beginning of the twentieth century; (ii) historical sets of aerial optical photographs to analyse the geomorphological evolution from 1945 to 2003; (iii) SAR (Synthetic Aperture Radar) data from the ERS1/2, ENVISAT and COSMO-SkyMed satellites to monitor the displacement from 1992 to 2015; (iv) traditional measurements carried out through geological and geomorphological surveys, inclinometers and GPS campaigns to characterize the geological setting of the area; and (v) recent optical photographs of the catchment area to determine the enlargement of the landslide. Using the structure from motion technique, a 3D reconstruction of each set of historical aerial photographs was made to investigate the geomorphological evolution and to trace the boundary of the mass movements. As a result, the combination of multitemporal and multitechnique analysis of the evolution of the CL-PO landslide enabled an assessment of the landslide expansion, which resulted in a maximum length of up to approximately 1500 m. A complete investigation of the past and present deformational sequences of the area was performed to potentially plan further mitigation and prevention strategies to avoid possible reactivations.This work was partially funded by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO); the State Agency of Research (AEI); and the European Funds for Regional Development (FEDER) under projects TEC2017-85244-C2-1-P and TIN2014-55413-C2-2-P and the Spanish Ministry of Education, Culture and Sport under project PRX17/00439
Phytochemical analysis and In vitro antileukemic activity of alkaloid-enriched extracts from Vinca sardoa (Stearn) Pignatti
Vinca sardoa (Stearn) Pignatti, known as Sardinian periwinkle, is widely diffused in Sardinia (Italy). This species contains indole alkaloids, which are known to have a great variety of biological activities. This study investigated the antileukemic activity against a B lymphoblast cell line (SUP-B15) of V. sardoa alkaloid-rich extracts obtained from plants grown in Italy, in Iglesias (Sardinia) and Rome (Latium). All the extracts showed a good capacity to induce reductions in cell proliferation of up to 50% at the tested concentrations (1–15 g/mL). Moreover, none of the extracts showed cytotoxicity on normal cells at all the studied concentrations
Observation of termination-dependent topological connectivity in a magnetic Weyl Kagome lattice
The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement 897276. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (https://www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (https://www.lrz.de). The authors are grateful for funding support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC 2147, Project 390858490), through FOR 5249-449872909 (Project P5), and through the Collaborative Research Center SFB 1170 ToCoTronics (Project 258499086). The authors greatly acknowledge the Diamond Light Source that supported the entire micro-ARPES experiment and corresponding costs. The Flatiron Institute is a division of the Simons Foundation. P.D.C.K. and C.B. gratefully acknowledge support from The Leverhulme Trust via Grant RL-2016-006.Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co3Sn2S2 and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of Co3Sn2S2 directly, by linking it to its real space surface distribution. By combining micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co3Sn2S2 for different surface terminations and show the existence of topological features depending on the top-layer electronic environment. Our work helps to define a route for controlling bulk-derived topological properties by means of surface electrostatic potentials, offering a methodology for using Weyl kagome metals in responsive magnetic spintronics.Publisher PDFPeer reviewe
- …