6 research outputs found

    The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells

    Full text link
    Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells

    Etude de la fusion membranaire mitochondriale à l'aide d'un modèle atomistique structural et dynamique de la mitofusine Fzo1p

    No full text
    Les mitochondries sont des organites dynamiques dont la morphologie dépend de l’équilibre fusion/fission de leurs membranes. Ce processus essentiel à la survie cellulaire est nommé dynamique mitochondriale et sa dérégulation est associée à des troubles neurologiques. Cependant les mécanismes précis régissant la dynamique mitochondriale ne sont pas élucidés. Cette thèse porte sur la protéine Fzo1p, une grande GTPase de la superfamille des Dynamin-related-Protein. C’est un élément clé impliqué dans la fusion mitochondriale de la membrane externe de la levure. Sa structure et sa dynamique ont été étudiées par modélisation et simulations de dynamiques moléculaires tout-atome dans une bicouche lipidique solvatée. Le modèle structural obtenu tient compte de données expérimentales, de template structuraux, et de modèles ab initio du domaine transmembranaire de Fzo1p. Ce modèle a été validé expérimentalement par mutagenèse dirigée. Des permutations de charges ont confirmé des ponts salins à longue distance prédits dans le modèle. En outre, des mutations ont montré que les domaines coiled-coil de Fzo1p, contrairement à sa partie N-terminale, sont indispensables à sa fonction. L’ensemble des résultats expérimentaux et in silico met en évidence l’implication des domaines charnières dans le changement conformationnel de Fzo1p, ainsi que des résidus critiques affectant sa stabilité. Les précisions atomiques obtenues sur l’interaction de Fzo1p avec le GDP permet de formuler des hypothèses sur le mécanisme moléculaire de la catalyse du GTP pour la fusion membranaire; voire à la compréhension de la dynamique mitochondriale.Mitochondria are dynamic organelles whose morphology is determined by fusion and fission of their membranes. This essential process is known as mitochondrial dynamics. Defects in mitochondrial dynamics are associated with neurological disorders making the investigation of physiological relevance. However, the precise sequence of events that lead mitochondrial dynamics are still not well characterised. Fzo1p, a large GTPase of the Dynamin-Related Proteins superfamily, is a key component in mitochondrial outer membrane fusion in yeast. During this PhD project I built a model of the protein Fzo1p. The structure and dynamics of the model was investigated through molecular modelling and all-atom molecular dynamics simulation in a fully hydrated lipid bilayer environment. The Fzo1p structural model integrates information from several template structures, experimental knowledge, as well as ab initio models of the transmembrane segments. The model is validated experimentally through directed mutagenesis, for instance charge-swap mutations confirm predicted long-distance salt bridges. A series of mutants indicate that coiled-coil domains are required for protein function at variance with its N-terminal region. Overall, the experimental and in silico approaches pinpoint the hinge domains involved in the putative conformational change and identifies critical residues affecting protein stability. Finally, key Fzo1p-GDP interactions provide insights about the molecular mechanism of membrane fusion catalysis. The model provides insight on atomic level and proposes a structure that will be instructional to understanding mitochondrial membrane fusion

    Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410

    Get PDF
    Mycobacterium tuberculosis is protected from antibiotic therapy by a multi-layered hydrophobic cell envelope. Major facilitator superfamily (MFS) transporter Rv1410 and the periplasmic lipoprotein LprG are involved in transport of triacylglycerides (TAGs) that seal the mycomembrane. Here, we report a 2.7 Å structure of a mycobacterial Rv1410 homologue, which adopts an outward-facing conformation and exhibits unusual transmembrane helix 11 and 12 extensions that protrude ~20 Å into the periplasm. A small, very hydrophobic cavity suitable for lipid transport is constricted by a functionally important ion-lock likely involved in proton coupling. Combining mutational analyses and MD simulations, we propose that TAGs are extracted from the core of the inner membrane into the central cavity via lateral clefts present in the inward-facing conformation. The functional role of the periplasmic helix extensions is to channel the extracted TAG into the lipid binding pocket of LprG

    The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells

    No full text
    Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells

    Anionic phospholipids stimulate the proton pumping activity of the plant plasma membrane P-Type H+^{+}-ATPase

    No full text
    The activity of membrane proteins depends strongly on the surrounding lipid environment. Here, we characterize the lipid stimulation of the plant plasma membrane H+^{+}-ATPase Arabidopsis thaliana\textit {Arabidopsis thaliana} H+^{+}-ATPase isoform 2 (AHA2) upon purification and reconstitution into liposomes of defined lipid compositions. We show that the proton pumping activity of AHA2 is stimulated by anionic phospholipids, especially by phosphatidylserine. This activation was independent of the cytoplasmic C-terminal regulatory domain of the pump. Molecular dynamics simulations revealed several preferential contact sites for anionic phospholipids in the transmembrane domain of AHA2. These contact sites are partially conserved in functionally different P-type ATPases from different organisms, suggesting a general regulation mechanism by the membrane lipid environment. Our findings highlight the fact that anionic lipids play an important role in the control of H+^{+}-ATPase activity
    corecore