1,578 research outputs found

    Iron carbonate formation kinetics onto corroding and pre-filmed carbon steel surfaces in carbon dioxide corrosion environments

    Get PDF
    This work investigates the Corrosion Layer Accumulation Rate (CLAR) of iron carbonate (FeCO3) onto X65 carbon steel in carbon dioxide containing environments using the direct method of corrosion layer mass gain measurement. Glass cell experiments were performed at 80 °C and pH 6.3 or 6.8 over a range of bulk FeCO3 saturation ratios using both actively corroding carbon steel and steel pre-filmed with FeCO3. The CLARs obtained from experiments using actively corroding samples displayed strong agreement with the most recently developed precipitation model by Sun and Nesic at high supersaturation for pH 6.3 and 6.8, but a disparity at low supersaturation for the solution at pH 6.8. The observed discrepancy was attributed to the significant difference in surface saturation ratio between the two conditions when the steel is actively corroding. CLARs determined for pre-FeCO3 filmed carbon steel show that the kinetics of FeCO3 formation reduce significantly once the film establishes a protective barrier at lower values of bulk supersaturation. The results highlight the contrast between surface layer accumulation kinetics in the early stages of growth and those encountered in the long-term after the development of a protective film

    In situ SR-XRD study of FeCO₃ precipitation kinetics onto carbon steel in CO₂-containing environments: The influence of brine pH

    Get PDF
    The growth of iron carbonate (FeCO₃) on the internal walls of carbon steel pipelines used for oil and gas transportation can reduce internal corrosion significantly. Solution pH can be considered as one of the most influential factors with regards to the kinetics, morphology and protection afforded by FeCO₃ films. This paper presents results from a recently developed in situ Synchrotron Radiation-X-ray Diffraction (SR-XRD) flow cell integrated with electrochemistry for corrosion measurements. The cell was used to follow the nucleation and growth kinetics of corrosion products on X65 carbon steel surfaces in a carbon dioxide (CO₂)-saturated 3.5 wt.% NaCl brine at 80 °C and a flow rate of 0.1 m/s over a range of solution pH values (6.3, 6.8 and 7). In all conditions, FeCO₃ was identified as the only crystalline phase to form. Electrochemical results coupled with post-test surface analysis indicate that at higher pH, larger portions of the surface become covered faster with thinner, more protective films consisting of smaller, denser and more compact crystals. The comparison between XRD main peak area intensities and FeCO₃ surface coverage, mass and volume indicates a qualitative relationship between these parameters at each pH, providing valuable information on the kinetics of film growth

    Task-Dependent Interaction between Parietal and Contralateral Primary Motor Cortex during Explicit versus Implicit Motor Imagery

    Get PDF
    Both mental rotation (MR) and motor imagery (MI) involve an internalization of movement within motor and parietal cortex. Transcranial magnetic stimulation (TMS) techniques allow for a task-dependent investigation of the interhemispheric interaction between these areas. We used image-guided dual-coil TMS to investigate interactions between right inferior parietal lobe (rIPL) and left primary motor cortex (M1) in 11 healthy participants. They performed MI (right index-thumb pinching in time with a 1 Hz metronome) or hand MR tasks, while motor evoked potentials (MEPs) were recorded from right first dorsal interosseous. At rest, rIPL conditioning 6 ms prior to M1 stimulation facilitated MEPs in all participants, whereas this facilitation was abolished during MR. While rIPL conditioning 12 ms prior to M1 stimulation had no effect on MEPs at rest, it suppressed corticomotor excitability during MI. These results support the idea that rIPL forms part of a distinct inhibitory network that may prevent unwanted movement during imagery tasks

    C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response

    Get PDF
    Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level

    Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal

    Get PDF
    Unlike most known flaviviruses (Family, Flaviviridae: Genus, Flavivirus), insect-only flaviviruses are a unique group of flaviviruses that only infect invertebrates. The study of insect-only flaviviruses has increased in recent years due to the discovery and characterization of numerous novel flaviviruses from a diversity of mosquito species around the world. The widespread discovery of these viruses has prompted questions regarding flavivirus evolution and the potential impact of these viruses on the transmission of flaviviruses of public health importance such as WNV. Therefore, we tested the effect of Culex flavivirus Izabal (CxFV Izabal), an insect-only flavivirus isolated from Culex quinquefasciatus mosquitoes in Guatemala, on the growth and transmission of a strain of WNV isolated concurrently from the same mosquito species and location. Prior infection of C6/36 (Aedes albopictus mosquito) cells or Cx. quinquefasciatus with CxFV Izabal did not alter the replication kinetics of WNV, nor did it significantly affect WNV infection, dissemination, or transmission rates in two different colonies of mosquitoes that were fed blood meals containing varying concentrations of WNV. These data demonstrate that CxFV probably does not have a significant effect on WNV transmission efficiency in nature

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore