31 research outputs found
Pena o gracia en Flandes bajo Carlos V y Felipe II, 1521-1598
Item does not contain fulltex
Burocracy in the government and the provinces of Flanders: 16th and 17th century
Artículo de la sección: *.El autor analiza la evolución de los principales órganos de gobierno, fundamen talmente los llamados Consejos Colaterales en el Flandes regio durante los siglos XVI y XVII . Señala con claridad cómo los profesionales del derecho o los tecnócratas en el campo de la Hacienda van desplazando a la vieja nobleza, desplazamiento que quizá haya que tener en cuenta para explicar su posición en la Rebelión. Se detiene en el estatuto del funcionario (nombramiento, relaciones familiares en el seno de la adminis tración, en la venta de oficios, etc.). Y concluye que, a pesar de los muchos avances, no se consigue por estas fechas la representación clásica del concepto de “burocracia”The author analyses the evolution of the main organs of government, focussing
on the Colateral Councils in Flanders during 16th and 17th centuries. Law professionals
and technocrats on public finance took the place of old nobility, this fact is important
to understand their position in the Rebellion. He stops to comment on the status of the
civil servant (appointment, family, relations in administration, the sale of papers, etc.).
And concludes that in spite of all progress made, the classical representation of the
concept of burocracy was not attained at that time.Departamento de Historia Moderna y de América, Universidad de Granada
Burocracy in the government and the provinces of Flanders: 16th and 17th century
El autor analiza la evolución de los principales órganos de gobierno, fundamentalmente los llamados Consejos Colaterales en el Flandes regio durante los siglos XVI y XVII. Señala con claridad cómo los profesionales del derecho o los tecnócratas en el campo de la Hacienda van desplazando a la vieja nobleza, desplazamiento que quizá haya que tener en cuenta para explicar su posición en la Rebelión. Se detiene en el estatuto del funcionario (nombramiento, relaciones familiares en el seno de la administración, en la venta de oficios, etc.). Y concluye que, a pesar de los muchos avances, no se consigue por estas fechas la representación clásica del concepto de “burocracia”.The author analyses the evolution of the main organs of government, focusing on the Colateral Councils in Flanders during 16th and 17th centuries. Law professionals and technocrats on public finance took the place of old nobility, this fact is important to understand their position in the Rebellion. He stops to comment on the status of the civil servant (appointment, family, relations in administration, the sale of papers, etc.). And concludes that in spite of all progress made, the classical representation of the concept of burocracy was not attained at that time
Predicting future suicidal behaviour in young adults, with different machine learning techniques: a population-based longitudinal study
Background: The predictive accuracy of suicidal behaviour has not improved over the last decades. We aimed to explore the potential of machine learning to predict future suicidal behaviour using population-based longitudinal data.
Method: Baseline risk data assessed within the Scottish wellbeing study, in which 3508 young adults (18-34 years) completed a battery of psychological measures, were used to predict both suicide ideation and suicide attempts at one-year follow-up. The performance of the following algorithms was compared: regular logistic regression, K-nearest neighbors, classification tree, random forests, gradient boosting and support vector machine.
Results: At one year follow up, 2428 respondents (71%) finished the second assessment. 336 respondents (14%) reported suicide ideation between baseline and follow up, and 50 (2%) reported a suicide attempt. All performance metrics were highly similar across methods. The random forest algorithm was the best algorithm to predict suicide ideation (AUC 0.83, PPV 0.52, BA 0.74) and the gradient boosting to predict suicide attempt (AUC 0.80, PPV 0.10, BA 0.69).
Limitations: The number of respondents with suicidal behaviour at follow up was small. We only had data on psychological risk factors, limiting the potential of the more complex machine learning algorithms to outperform regular logistical regression.
Conclusions: When applied to population-based longitudinal data containing multiple psychological measurements, machine learning techniques did not significantly improve the predictive accuracy of suicidal behavior. Adding more detailed data on for example employment, education or previous health care uptake, might result in better performance of machine learning over regular logistical regression