3,677 research outputs found

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide

    Combined sticking: a new approach for finite-amplitude Coulomb frictional contact

    Get PDF
    Engineering-level accuracy of discretization methods for frictional contact originates from precise representation of discontinuous frictional and normal interaction laws and precise discrete contact techniques. In terms of discontinuous behavior in the quasi-static case, two themes are of concern: the normal interaction (i.e. impact) and the jumps in tangential directions arising from high frictional values. In terms of normal behavior, we use a smoothed complementarity relation. For the tangential behavior, we propose a simple and effective algorithm, which is based a stick predictor followed by corrections to the tangential velocity. This allows problems with impact and stick-slip behavior to be solved with an implicit code based on Newton–Raphson iterations. Three worked examples are shown with comparisons with published results. An extension to node-to-face form in 3D is also presented

    A Smart Wireless Car Ignition System for Vehicle Security

    Get PDF
    Copyright: © 2017 Haider A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The paper proposes a novel car ignition system to replace the traditional wired technology and enhance vehicle security. This new system uses wireless transmissions to start the engine and hence eliminates the ignition wire behind the dashboard. It also allows the user to set a password of his/her choice to keep the system protected. A theft alarm that goes ‘’ON’’ when an unusual activity is sensed and/or when the wrong password is attempted to unlock the system is integrated in the system. Moreover, important factors such as economic feasibility, adaptability to the new vehicle technologies and customers’ preferences have been taken into consideration in the design of the proposed vehicle security system.Peer reviewedFinal Published versio

    Molecular Characterization and Phylogenetic Study of Coxsackievirus A24v Causing Outbreaks of Acute Hemorrhagic Conjunctivitis (AHC) in Brazil

    Get PDF
    Coxsackievirus A24 variant (CA24v) is the most prevalent viral pathogen associated with acute hemorrhagic conjunctivitis (AHC) outbreaks. Sixteen years after its first outbreak in Brazil, this agent reemerged in 2003 in Brazil, spread to nearly all states and caused outbreaks until 2005. In 2009, a new outbreak occurred in the northeast region of the country. In this study, we performed a viral isolation in cell culture and characterized clinical samples collected from patients presenting symptoms during the outbreak of 2005 in Vitória, Espírito Santo State (ES) and the outbreak of 2009 in Recife, Pernambuco State (PE). We also performed a phylogenetic analysis of worldwide strains and all meaningful Brazilian isolates since 2003.Sterile cotton swabs were used to collect eye discharges, and all 210 clinical samples were used to inoculate cell cultures. Cytopathic effects in HEp-2 cells were seen in 58 of 180 (32%) samples from Vitória and 3 of 30 (10%) samples from Recife. Phylogenetic analysis based on a fragment of the VP1 and 3C gene revealed that the CA24v causing outbreaks in Brazil during the years 2003, 2004 and 2005 evolved from Asian isolates that had caused the South Korean outbreak of AHC during the summer of 2002. However, the 2009 outbreak of AHC in Pernambuco was originated from the reintroduction of a new CA24v strain that was circulating during 2007 in Asia, where CA24v outbreaks has been continuously reported since 1970.This study is the first phylogenetic analysis of AHC outbreaks caused by CA24v in Brazil. The results showed that Asian strains of CA24v were responsible for the outbreaks since 1987 and were independently introduced to Brazil in 2003 and 2009. Phylogenetic analysis of complete VP1 gene is a useful tool for studying the epidemiology of enteroviruses associated with outbreaks

    Occupational exposure of workers to pesticides: Toxicogenetics and susceptibility gene polymorphisms

    Get PDF
    Farm workers are often exposed to pesticides, which are products belonging to a specific chemical group that affects the health of agricultural workers and is mostly recognized as genotoxic and carcinogenic. The exposure of workers from Piauí, Brazil, to these hazardous chemicals was assessed and cytogenetic alterations were evaluated using the buccal micronucleus assay, hematological and lipid parameters, butyrylcholinesterase (BChE) activity and genetic polymorphisms of enzymes involved in the metabolism of pesticides, such as PON1, as well as of the DNA repair system (OGG1, XRCC1 and XRCC4). Two groups of farm workers exposed to different types of pesticides were evaluated and compared to matched non-exposed control groups. A significant increase was observed in the frequencies of micronuclei, kariorrhexis, karyolysis and binucleated cells in the exposed groups (n = 100) compared to controls (n = 100). No differences were detected regarding the hematological parameters, lipid profile and BChE activity. No significant difference was observed either regarding DNA damage or nuclear fragmentation when specific metabolizing and DNA repair genotypes were investigated in the exposed groups

    A novel survival model of cardioplegic arrest and cardiopulmonary bypass in rats: a methodology paper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the growing population of cardiac surgery patients with impaired preoperative cardiac function and rapidly expanding surgical techniques, continued efforts to improve myocardial protection strategies are warranted. Prior research is mostly limited to either large animal models or <it>ex vivo </it>preparations. We developed a new <it>in vivo </it>survival model that combines administration of antegrade cardioplegia with endoaortic crossclamping during cardiopulmonary bypass (CPB) in the rat.</p> <p>Methods</p> <p>Sprague-Dawley rats were cannulated for CPB (n = 10). With ultrasound guidance, a 3.5 mm balloon angioplasty catheter was positioned via the right common carotid artery with its tip proximal to the aortic valve. To initiate cardioplegic arrest, the balloon was inflated and cardioplegia solution injected. After 30 min of cardioplegic arrest, the balloon was deflated, ventilation resumed, and rats were weaned from CPB and recovered. To rule out any evidence of cerebral ischemia due to right carotid artery ligation, animals were neurologically tested on postoperative day 14, and their brains histologically assessed.</p> <p>Results</p> <p>Thirty minutes of cardioplegic arrest was successfully established in all animals. Functional assessment revealed no neurologic deficits, and histology demonstrated no gross neuronal damage.</p> <p>Conclusion</p> <p>This novel small animal CPB model with cardioplegic arrest allows for both the study of myocardial ischemia-reperfusion injury as well as new cardioprotective strategies. Major advantages of this model include its overall feasibility and cost effectiveness. In future experiments long-term echocardiographic outcomes as well as enzymatic, genetic, and histologic characterization of myocardial injury can be assessed. In the field of myocardial protection, rodent models will be an important avenue of research.</p
    corecore