724 research outputs found
Hector, a fast simulator for the transport of particles in beamlines
Computing the trajectories of particles in generic beamlines is an important
ingredient of experimental particle physics, in particular regarding near-beam
detectors. A new tool, Hector, has been built for such calculations, using the
transfer matrix approach and energy corrections. The limiting aperture effects
are also taken into account. As an illustration, the tool was used to simulate
the LHC beamlines, in particular around the high luminosity interaction points
(IPs), and validated with results of the Mad-X simulator. The LHC beam
profiles, trajectories and beta functions are presented. Assuming certain
forward proton detector scenarios around the IP5, acceptance plots, irradiation
doses and chromaticity grids are produced. Furthermore, the reconstruction of
proton kinematic variables at the IP (energy and angle) is studied as well as
the impact of the misalignment of beamline elements.Comment: 40 pages, 20 figures; added references, corrected typos ; submitted
to JINS
DELPHES 3, A modular framework for fast simulation of a generic collider experiment
The version 3.0 of the DELPHES fast-simulation is presented. The goal of
DELPHES is to allow the simulation of a multipurpose detector for
phenomenological studies. The simulation includes a track propagation system
embedded in a magnetic field, electromagnetic and hadron calorimeters, and a
muon identification system. Physics objects that can be used for data analysis
are then reconstructed from the simulated detector response. These include
tracks and calorimeter deposits and high level objects such as isolated
electrons, jets, taus, and missing energy. The new modular approach allows for
greater flexibility in the design of the simulation and reconstruction
sequence. New features such as the particle-flow reconstruction approach,
crucial in the first years of the LHC, and pile-up simulation and mitigation,
which is needed for the simulation of the LHC detectors in the near future,
have also been implemented. The DELPHES framework is not meant to be used for
advanced detector studies, for which more accurate tools are needed. Although
some aspects of DELPHES are hadron collider specific, it is flexible enough to
be adapted to the needs of electron-positron collider experiments.Comment: JHEP 1402 (2014
High energy photon interactions at the LHC
Experimental prospects for studying high-energy photon-photon and
photon-proton interactions at the CERN Large Hadron Collider (LHC) are
discussed. Cross sections are calculated for many electroweak and beyond the
Standard Model processes. Selection strategies based on photon interaction
tagging techniques are studied. Assuming a typical LHC multipurpose detector,
various signals and their irreducible backgrounds are presented after applying
acceptance cuts. Prospects are discussed for the Higgs boson search, detection
of supersymmetric particles and of anomalous quartic gauge couplings, as well
as for the top quark physics.Comment: 17 pages, 16 tables and 14 figure
Top Partner Discovery in the channel at the LHC
In this paper we study the discovery potential of the LHC run II for heavy
vector-like top quarks in the decay channel to a top and a boson. Despite
the usually smaller branching ratio compared to charged-current decays, this
channel is rather clean and allows for a complete mass reconstruction of the
heavy top. The latter is achieved in the leptonic decay channel of the
boson and in the fully hadronic top channel using boosted jet and jet
substructure techniques. To be as model-independent as possible, a simplified
model approach with only two free parameters has been applied. The results are
presented in terms of parameter space regions for evidence or
discovery for such new states in that channel.Comment: 24 pages, 8 figures, version 2 updated to JHEP 01 (2015) 08
High-E_T dijet photoproduction at HERA
The cross section for high-E_T dijet production in photoproduction has been
measured with the ZEUS detector at HERA using an integrated luminosity of 81.8
pb-1. The events were required to have a virtuality of the incoming photon,
Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the
range 142 < W < 293 GeV. Events were selected if at least two jets satisfied
the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV
and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of
the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to
the parton distributions in the photon and proton and effects beyond
next-to-leading order in QCD. Hence these data can be used to constrain further
the parton densities in the proton and photon.Comment: 36 pages, 13 figures, 20 tables, including minor revisions from
referees. Accepted by Phys. Rev.
An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment
The ZEUS inclusive differential cross-section data from HERA, for charged and
neutral current processes taken with e+ and e- beams, together with
differential cross-section data on inclusive jet production in e+ p scattering
and dijet production in \gamma p scattering, have been used in a new NLO QCD
analysis to extract the parton distribution functions of the proton. The input
of jet data constrains the gluon and allows an accurate extraction of
\alpha_s(M_Z) at NLO;
\alpha_s(M_Z) = 0.1183 \pm 0.0028(exp.) \pm 0.0008(model)
An additional uncertainty from the choice of scales is estimated as \pm
0.005. This is the first extraction of \alpha_s(M_Z) from HERA data alone.Comment: 37 pages, 14 figures, to be submitted to EPJC. PDFs available at
http://durpdg.dur.ac.uk/hepdata in LHAPDFv
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- âŚ