111 research outputs found

    Potent antiviral agents fail to elicit genetically-stable resistance mutations in either enterovirus 71 or Coxsackievirus A16

    Get PDF
    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the two major causative agents 13 of hand, foot and mouth disease (HFMD), for which there are currently no licenced 14 treatments. Here, the acquisition of resistance towards two novel capsid-binding compounds, 15 NLD and ALD, was studied and compared to the analogous compound GPP3. During serial 16 passage, EV71 rapidly became resistant to each compound and mutations at residues I113 17 and V123 in VP1 were identified. A mutation at residue 113 was also identified in CVA16 18 after passage with GPP3. The mutations were associated with reduced thermostability and 19 were rapidly lost in the absence of inhibitors. In silico modelling suggested that the mutations 20 prevented the compounds from binding the VP1 pocket in the capsid. Although both viruses 21 developed resistance to these potent pocket-binding compounds, the acquired mutations were 22 associated with large fitness costs and reverted to WT phenotype and sequence rapidly in the 23 absence of inhibitors. The most effective inhibitor, NLD, had a very large selectivity index, 24 showing interesting pharmacological properties as a novel anti-EV71 agent

    Assembly of complex viruses exemplified by a halophilic euryarchaeal virus

    Get PDF
    Many of the largest known viruses belong to the PRD1-adeno structural lineage characterised by conserved pseudo-hexameric capsomers composed of three copies of a single major capsid protein (MCP). Here, by high-resolution cryo-EM analysis, we show that a class of archaeal viruses possess hetero-hexameric MCPs which mimic the PRD1-adeno lineage trimer. These hetero-hexamers are built from heterodimers and utilise a jigsaw-puzzle system of pegs and holes, and underlying minor capsid proteins, to assemble the capsid laterally from the 5-fold vertices. At these vertices proteins engage inwards with the internal membrane vesicle whilst 2-fold symmetric horn-like structures protrude outwards. The horns are assembled from repeated globular domains attached to a central spine, presumably facilitating multimeric attachment to the cell receptor. Such viruses may represent precursors of the main PRD1-adeno lineage, similarly engaging cell-receptors via 5-fold spikes and using minor proteins to define particle size.Peer reviewe

    Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine

    Get PDF
    Poliovirus (PV) is the causative agent of poliomyelitis, a crippling human disease known since antiquity. PV occurs in two distinct antigenic forms, D and C, of which only the D form elicits a robust neutralizing response. Developing a synthetically produced stabilized viruslike particle (sVLP)-based vaccine with D antigenicity, without the drawbacks of current vaccines, will be a major step towards the final eradication of poliovirus. Such a sVLP would retain the native antigenic conformation and the repetitive structure of the original virus particle, but lack infectious genomic material. In this study, we report the production of synthetically stabilized PV VLPs in plants. Mice carrying the gene for the human PV receptor are protected from wild-type PV when immunized with the plant-made PV sVLPs. Structural analysis of the stabilized mutant at 3.6 Ã… resolution by cryo-electron microscopy and single particle reconstruction reveals a structure almost indistinguishable from wild-type PV3

    Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    Get PDF
    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel

    An Italian prospective multicenter study on colonoscopy practice and quality: What has changed in the last 10 years

    Get PDF
    Background: A relevant number of adenomas can be missed during colonoscopy. Aims: Assess the current status of colonoscopy procedures in Italian centers. Methods: A prospective observational study involving 17 hospitals (34 endoscopists) included consecutive patients undergoing standard colonoscopy. In the first phase, endoscopists performed consecutive colonoscopies. In the second phase, retraining via an online learning platform was planned, while in the third phase data were collected analogously to phase 1. Results: A total of 3,504 patients were enrolled. Overall, a BBPS score ≥6 was obtained in 95.6% of cases (94.8% and 96.9% in the pre- and post-training phases, respectively). 88.4% of colonoscopies had a withdrawal time ≥6 min (88.2% and 88.7% in the pre- and post-training phases). Median adenoma detection rate (ADR) was 39.1%, with no significant differences between the pre- and post-training phases (40.1% vs 36.9%; P = 0.83). In total, 81% of endoscopists had a ADR performance above the 25% threshold. Conclusion: High colonoscopy quality standards are achieved by the Italian hospitals involved. Quality improvement initiatives and repeated module-based colonoscopy-training have been promoted in Italy during the last decade, which appear to have had a significant impact on quality colonoscopy metrics together with the activation of colorectal cancer screening programs

    Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research

    Get PDF
    Chikungunya virus (CHIKV) is becoming an increasing global health issue which has spread across the globe and as far north as southern Europe. There is currently no vaccine or anti-viral treatment available. Although there has been a recent increase in CHIKV research, many of these in vitro studies have used a wide range of cell lines which are not physiologically relevant to CHIKV infection in vivo. In this study, we aimed to evaluate a panel of cell lines to identify a subset that would be both representative of the infectious cycle of CHIKV in vivo, and amenable to in vitro applications such as transfection, luciferase assays, immunofluorescence, western blotting and virus infection. Based on these parameters we selected four mammalian and two mosquito cell lines, and further characterised these as potential tools in CHIKV research

    Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2

    Get PDF
    Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease—a disease endemic especially in the Asia-Pacific region1. Scavenger receptor class B member 2 (SCARB2) is the major receptor of EV71, as well as several other enteroviruses responsible for hand, foot and mouth disease, and plays a key role in cell entry2. The isolated structures of EV71 and SCARB2 are known3,4,5,6, but how they interact to initiate infection is not. Here, we report the EV71–SCARB2 complex structure determined at 3.4 Å resolution using cryo-electron microscopy. This reveals that SCARB2 binds EV71 on the southern rim of the canyon, rather than across the canyon, as predicted3,7,8. Helices 152–163 (α5) and 183–193 (α7) of SCARB2 and the viral protein 1 (VP1) GH and VP2 EF loops of EV71 dominate the interaction, suggesting an allosteric mechanism by which receptor binding might facilitate the low-pH uncoating of the virus in the endosome/lysosome. Remarkably, many residues within the binding footprint are not conserved across SCARB2-dependent enteroviruses; however, a conserved proline and glycine seem to be key residues. Thus, although the virus maintains antigenic variability even within the receptor-binding footprint, the identification of binding ‘hot spots’ may facilitate the design of receptor mimic therapeutics less likely to quickly generate resistance

    Neurotransmitter selection by monoamine oxidase isoforms, dissected in terms of functional groups by mixed double mutant cycles

    Get PDF
    Double mutant cycles were constructed using neurotransmitters and synthetic substrates that measure their selective binding to one monoamine oxidase (MAO) enzyme isoform over another as a function of structural change. This work measures a reduction in selectivity for the MAOB isoform of 3 to 9.5 kJ mol−1 upon the addition of hydroxy functional groups to a phenethylamine scaffold. Replacement of hydroxy functional groups on the phenethylamine scaffold by hydrophobic substituents measures an increase in selectivity for MAOB of −1.1 to −6.9 kJ mol−1. The strategies presented here can be applied to the development of competitive reversible inhibitors of MAO enzymes and other targets with structurally related isoforms
    • …
    corecore