242 research outputs found

    Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Full text link
    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, kTk_T factorization including low-xx resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 77 TeV and at 1313 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10%10\% to 50%50 \% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.Comment: 61 pages, 25 figures, 11 table

    Constraining the primordial spectrum of metric perturbations from gravitino and moduli production

    Get PDF
    We consider the production of gravitinos and moduli fields from quantum vacuum fluctuations induced by the presence of scalar metric perturbations at the end of inflation. We obtain the corresponding occupation numbers, up to first order in perturbation theory, in terms of the power spectrum of the metric perturbations. We compute the limits imposed by nucleosynthesis on the spectral index nsn_s for different models with constant nsn_s. The results show that, in certain cases, such limits can be as strong as ns<1.12n_s<1.12, which is more stringent than those coming from primordial black hole production.Comment: 16 pages, LaTeX, 5 figures. Corrected figures, new references included. Final version to appear in Phys. Rev.

    Cosmic Strings and the String Dilaton

    Full text link
    The existence of a dilaton (or moduli) with gravitational-strength coupling to matter imposes stringent constraints on the allowed energy scale of cosmic strings, η\eta. In particular, superheavy gauge strings with η∌1016GeV\eta \sim 10^{16} GeV are ruled out unless the dilaton mass m_{\phi} \gsim 100 TeV, while the currently popular value mϕ∌1TeVm_{\phi} \sim 1 TeV imposes the bound \eta \lsim 3 \times 10^{11} GeV. Similar constraints are obtained for global topological defects. Some non-standard cosmological scenarios which can avoid these constraints are pointed out.Comment: 16 page

    Production and dilution of gravitinos by modulus decay

    Full text link
    We study the cosmological consequences of generic scalar fields like moduli which decay only through gravitationally suppressed interactions. We consider a new production mechanism of gravitinos from moduli decay, which might be more effective than previously known mechanisms, and calculate the final gravitino-to-entropy ratio to compare with the constraints imposed by successful big bang nucleosynthesis (BBN) etc., taking possible hadronic decays of gravitinos into account. We find the modulus mass smaller than ∌104\sim 10^4 TeV is excluded. On the other hand, inflation models with high reheating temperatures TR,inf∌1016T_{R,\rm inf} \sim 10^{16} GeV can be compatible with BBN thanks to the late-time entropy production from the moduli decay if model parameters are appropriately chosen.Comment: 18 pages, 4 figures, to appear in Phys. Rev.

    MeV-scale Reheating Temperature and Thermalization of Neutrino Background

    Full text link
    The late-time entropy production by the massive particle decay induces the various cosmological effects in the early epoch and modify the standard scenario. We investigate the thermalization process of the neutrinos after the entropy production by solving the Boltzmann equations numerically. We find that if the large entropy are produced at t ∌\sim 1 sec, the neutrinos are not thermalized very well and do not have the perfect Fermi-Dirac distribution. Then the freeze-out value of the neutron to proton ratio is altered considerably and the produced light elements, especially He4, are drastically changed. Comparing with the observational light element abundances, we find that TRT_R < 0.7 MeV is excluded at 95 % C.L. We also study the case in which the massive particle has a decay mode into hadrons. Then we find that TRT_R should be a little higher, i.e. TRT_R > 2.5 MeV - 4 MeV, for the hadronic branching ratio Bh=10−2−1B_h = 10^{-2} - 1. Possible influence of late-time entropy production on the large scale structure formation and temperature anisotropies of cosmic microwave background is studied. It is expected that the future satellite experiments (MAP and PLANCK) to measure anisotropies of cosmic microwave background radiation temperature can detect the vestige of the late-time entropy production as a modification of the effective number of the neutrino species NÎœeffN_{\nu}^{\rm eff}.Comment: 43 pages, using REVTEX and 17 postscript figure

    False Vacuum Inflation with Einstein Gravity

    Full text link
    We investigate chaotic inflation models with two scalar fields, such that one field (the inflaton) rolls while the other is trapped in a false vacuum state. The false vacuum becomes unstable when the inflaton field falls below some critical value, and a first or second order transition to the true vacuum ensues. Particular attention is paid to Linde's second-order `Hybrid Inflation'; with the false vacuum dominating, inflation differs from the usual true vacuum case both in its cosmology and in its relation to particle physics. The spectral index of the adiabatic density perturbation can be very close to 1, or it can be around ten percent higher. The energy scale at the end of inflation can be anywhere between 101610^{16}\,GeV and 101110^{11}\,GeV, though reheating is prompt so the reheat temperature can't be far below 1011 10^{11}\,GeV. Topological defects are almost inevitably produced at the end of inflation, and if the inflationary energy scale is near its upper limit they can have significant effects. Because false vacuum inflation occurs with the inflaton field far below the Planck scale, it is easier to implement in the context of supergravity than standard chaotic inflation. That the inflaton mass is small compared with the inflationary Hubble parameter is still a problem for generic supergravity theories, but remarkably this can be avoided in a natural way for a class of supergravity models which follow from orbifold compactification of superstrings. This opens up the prospect of a truly realistic, superstringComment: 37 pages, LaTeX (3 figures available as hard copies only), SUSSEX-AST 94/1-

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Leptogenesis from N~\widetilde{N}-dominated early universe

    Full text link
    We investigate in detail the leptogenesis by the decay of coherent right-handed sneutrino N~\widetilde{N} having dominated the energy density of the early universe, which was originally proposed by HM and TY. Once the N~\widetilde{N} dominant universe is realized, the amount of the generated lepton asymmetry (and hence baryon asymmetry) is determined only by the properties of the right-handed neutrino, regardless of the history before it dominates the universe. Moreover, thanks to the entropy production by the decay of the right-handed sneutrino, thermally produced relics are sufficiently diluted. In particular, the cosmological gravitino problem can be avoided even when the reheating temperature of the inflation is higher than 10^{10}\GeV, in a wide range of the gravitino mass m_{3/2}\simeq 10\MeV--100\TeV. If the gravitino mass is in the range m_{3/2}\simeq 10\MeV--1\GeV as in the some gauge-mediated supersymmetry breaking models, the dark matter in our universe can be dominantly composed of the gravitino. Quantum fluctuation of the N~\widetilde{N} during inflation causes an isocurvature fluctuation which may be detectable in the future.Comment: 16 page

    Production properties of K*(892) vector mesons and their spin alignment as measured in the NOMAD experiment

    Get PDF
    First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results obtained for the rho00 parameter, 0.40 +/- 0.06 (stat) +/- 0.03 (syst) and 0.28 +/- 0.07 (stat) +/- 0.03 (syst) for K*+ and K*- produced in nu_mu CC interactions, are compared to theoretical predictions tuned on LEP measurements in e+e- annihilation at the Z0 pole. For K*+ mesons produced in nu NC interactions the measured rho00 parameter is 0.66 +/- 0.10 (stat) +/- 0.05 (syst).Comment: 20 p
    • 

    corecore