48 research outputs found

    A Health Monitoring System Based on Flexible Triboelectric Sensors for Intelligence Medical Internet of Things and its Applications in Virtual Reality

    Full text link
    The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications, enabling the realization of precision medicine, intelligent healthcare, and telemedicine in the era of digitalization and intelligence. However, the IoMT faces various challenges, including sustainable power supply, human adaptability of sensors and the intelligence of sensors. In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics. We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD). By further integrating deep learning-assisted data analytics, we actualized an intelligent healthcare monitoring system for the surveillance and interaction of PD patients, which includes location/trajectory tracking, heart monitoring and identity recognition. This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions. This monitoring system is cost-effective, easily fabricated, highly sensitive, and intelligent, consequently underscores the immense potential of human body sensing technology in a Health 4.0 society

    Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

    Get PDF
    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary – the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.Natural Sciences and Engineering Research Council of CanadaCanadian Foundation for InnovationCMC Microsystems (Firm)Ontario Research Foundatio

    A self-powered multi-broadcasting wireless sensing system realized with an all-in-one triboelectric nanogenerator

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.nanoen.2019.05.073. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The ubiquitous sensors at the core network of Internet of Things (IoT) have accelerated the realization of micro/nano systems that necessitate not only the development of self-powered sensors but also requires a reliable wireless communication mode. Here, a self-powered multi-broadcasting wireless sensing system based on an all-in-one triboelectric nanogenerator (TENG) is reported, which can simultaneously power up a custom-made wireless node and act as a sensor. The whole device and the system are encapsulated in a unique compact structure, in which the top segment consists of a spring-assisted multifunctional TENG (MTENG) and, the bottom section contains an integrated energy management and Bluetooth transmitter module. Following the structural and material modifications, the top unit of the MTENG is used to detect vibration frequency and amplitude by correlation with the TENG output voltage. The device has been employed to successfully detect the running frequency of a linear shaker and various generated signals. Owing to the nanostructured material surfaces, the device yields an output current of 300 μA and a power density of 4 W/m2 with the normal hand pressing. Moreover, the developed portable MTENG is also assessed to remotely monitor automobile engine vibration and is expected to result in a myriad of applications.This research was financially supported by The Natural Sciences and Engineering Research Council of Canada (NSERC) and Ontario Centres of Excellence (OCE)

    Electrically switching transverse modes in high power THz quantum cascade lasers.

    Get PDF
    The design and fabrication of a high power THz quantum cascade laser (QCL), with electrically controllable transverse mode is presented. The switching of the beam pattern results in dynamic beam switching using a symmetric side current injection scheme. The angular-resolved L-I curves measurements, near-field and far-field patterns and angular-resolved lasing spectra are presented. The measurement results confirm that the quasi-TM(01) transverse mode lases first and dominates the lasing operation at lower current injection, while the quasi-TM(00) mode lases at a higher threshold current density and becomes dominant at high current injection. The near-field and far-field measurements confirm that the lasing THz beam is maneuvered by 25 degrees in emission angle, when the current density changes from 1.9 kA/cm(2) to 2.3 kA/cm(2). A two-dimension (2D) current and mode calculation provides a simple model to explain the behavior of each mode under different bias conditions

    Pozzolanicity of the industrial wastes, glass and ceramic wools

    Get PDF
    As fibras cerâmicas se caracterizam por ser um material leve, com alto grau de pureza, baixo armazenamento de calor, baixa condutividade térmica, resistência a choque térmico e alta resistência à corrosão em altas temperaturas. Essas características levam a uma grande procura das indústrias mínero-metalúrgicas e de outros setores para revestimentos de distribuidores, muflas, fornos de aquecimentos, entre outros. Após utilização no processo, por perderem sua capacidade de isolamento, os resíduos gerados precisam de destinação. Esse trabalho enfoca, especificamente, resíduos de lã cerâmica e lã de vidro. Pelo fato de a composição das fibras cerâmicas ser rica em sílica e alumina, efetuou-se uma investigação acerca da atividade pozolânica das mesmas com a cal e o cimento, especificamente CPV ARI, CPII E32 e CPIII 32RS, para avaliação da perspectiva de reciclagem em possível incorporação no concreto

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Theoretical Study of Quasi One-Well Terahertz Quantum Cascade Laser

    No full text
    Developing a high-temperature terahertz (THz) quantum cascade laser (QCL) has been one of the major challenges in the THz QCL field over recent decades. The maximum lasing temperature of THz QCLs has gradually been increased, arguably by shortening the length of repeating periods of the quantum structure in the device’s active region from 7 wells/14 layers to 2 wells/4 layers per period. The current highest operating temperature of 250 K was achieved in a two-well direct-phonon design. In this paper, we propose a potential and promising novel quantum design scheme named the quasi one-well (Q1W) design, in which each quantum cascade period consists of only three semiconductor layers. This design is the narrowest of all existing THz QCL structures to date. We explore a series of the Q1W designs using the non-equilibrium green function (NEGF) and rate-equation (RE) models. Both models show that the Q1W designs exhibit the potential to achieve sufficient optical gain with low-temperature sensitivity. Our simulation results suggest that this novel Q1W scheme may potentially lead to relatively less temperature-sensitive THz QCLs. The thickness of the Q1W scheme is less than 20 nm per period, which is the narrowest of the reported THz QCL schemes

    A Single Wavelength Mid-Infrared Photoacoustic Spectroscopy for Noninvasive Glucose Detection Using Machine Learning

    No full text
    According to the International Diabetes Federation, 530 million people worldwide have diabetes, with more than 6.7 million reported deaths in 2021. Monitoring blood glucose levels is essential for individuals with diabetes, and developing noninvasive monitors has been a long-standing aspiration in diabetes management. The ideal method for monitoring diabetes is to obtain the glucose concentration level with a fast, accurate, and pain-free measurement that does not require blood drawing or a surgical operation. Multiple noninvasive glucose detection techniques have been developed, including bio-impedance spectroscopy, electromagnetic sensing, and metabolic heat conformation. Nevertheless, reliability and consistency challenges were reported for these methods due to ambient temperature and environmental condition sensitivity. Among all the noninvasive glucose detection techniques, optical spectroscopy has rapidly advanced. A photoacoustic system has been developed using a single wavelength quantum cascade laser, lasing at a glucose fingerprint of 1080 cm−1 for noninvasive glucose monitoring. The system has been examined using artificial skin phantoms, covering the normal and hyperglycemia blood glucose ranges. The detection sensitivity of the system has been improved to ±25 mg/dL using a single wavelength for the entire range of blood glucose. Machine learning has been employed to detect glucose levels using photoacoustic spectroscopy in skin samples. Ensemble machine learning models have been developed to measure glucose concentration using classification techniques. The model has achieved a 90.4% prediction accuracy with 100% of the predicted data located in zones A and B of Clarke’s error grid analysis. This finding fulfills the US Food and Drug Administration requirements for glucose monitors

    Effect of interface roughness scattering on performance of indirectly pumped terahertz quantum cascade lasers

    Get PDF
    The effect of interface roughness scattering on performance of indirectly-pumped terahertz quantum cascade lasers is studied and a dual-barrier structure is proposed to improve its performance in terms of threshold current density and operating temperature.Peer reviewed: YesNRC publication: Ye
    corecore