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Abstract: The ubiquitous sensors at the core network of materof Things (IoT) have
accelerated the realization of micro/nano systdms mecessitate not only the development of
self-powered sensors but also requires a relialielegs communication mode. Here, a self-
powered multi- broadcasting wireless sensing sysbased on an all-in-one triboelectric
nanogenerator (TENG) is reported, which can simelbaisly power up a custom-made wireless
node and act as a sensor. The whole device argystem are encapsulated in a unigue compact
structure, in which the top segment consists of pang-assisted multifunctional TENG
(MTENG) and, the bottom section contains an integteenergy management and Bluetooth
transmitter module. Following the structural andtenal modifications, the top unit of the
MTENG is used to detect vibration frequency and lgoge by correlation with the TENG
output voltage. The device has been employed toesstully detect the running frequency of a
linear shaker and various generated signals. Owarthe nanostructured material surfaces, the

device yields an output current of 300 pA and aguodensity of 4 W/rhwith the normal hand



pressing. Moreover, the developed portable MTENGalsb assessed to remotely monitor
automobile engine vibration and is expected to Iltesm a myriad of applications.

1. Introduction

In the era of Internet of Things (IoT), the widesgil existence of sensors have not only brought
great convenience to our lives but has also ramtsequential challenges in achieving a
wireless sensor network (WSN) with sustainable powepply and reliable wireless
communication [1-2]. To power up the distributechs® nodes in WSNs using batteries is
unrealistic since commercial Li-ion batteries havémited lifetime and the maintenance cost
can be prohibitively expensive. An alternative $iolu is to use an energy-scavenging device in
lieu of a Li-ion battery to harvest energy from #wmbient environment for sustainable power
supply. Over the past decades, various efforts have begotate to harvest energy from
different environmental energy sources such asatidm, water and wind, using electromagnetic
[3, 4, 5-7], electrostatic [8-10], and piezoeleximethods [11, 12, 13-14]. Recently, triboelectric
nanogenerators (TENGs) based on the coupling effecontact electrification and electrostatic
induction have emerged as a persuasive technotoggrivert ambient mechanical energy into
electric energy with numerous advantages, includiagge power density, high energy
conversion efficiency, versatile options for maaeselection, light weight, low cost etc. [15-26].
Until now, four modes of TENGs have been signifibaimvestigated — lateral sliding mode,
vertical contact-separation mode, freestanding maahel single-electrode mode. These can
scavenge almost all types of mechanical energy ftben environment [27, 28, 29-30]. In
addition, they have successfully been used agselered sensors in wind speed sensing, micro
liquid biological and chemical sensing, vibrationomtoring, transportation and traffic

management, motion tracking, powering biomedicatrasystems, among others [31-40].



However, due to the randomness of mechanical ensogyces as well as the high internal
impedance and low output current of TENGSs, thetegnation with a practical application
system is still challenging. After the first demtration in 2012, there have been remarkable
progresses in the device development of TENGs PJ1-But few studies have carefully
addressed the efficient integration of a self-p@desystem [43-46].

In a real-time sensing system, the measured sigmed¢sl to be processed first, and then
transmitted to a central station via one of théedént RF techniques, such as wireless local area
networks (WLAN), Cellular, Bluetooth, Zigbee, or dRa-frequency identification (RFID). The
inclusion of a signal processing unit and wirelgassmission unit imposes a very demanding
power supply requirement, given that the power autipm most of the energy harvesters under
real-life vibration conditions is relatively low. eRently, a self-powered system integrating
different function modules was presented, howaveges not incorporate a sensing unit [47]. In
another study, although a self-powered system tith separate piezoelectric and triboelectric
nanogenerator units enabled transmitting pre-caitgubls [48], the low output power from the
system may not guarantee sustainable and reliabdéess data transmission.

To address the aforementioned issues, one possiligon can be the development of an all-in-
one or multifunctional triboelectric nanogenerafTENG), which can simultaneously act a
sensor and as energy harvester to operate the \WRtoleansmitter and signal processor unit.
Herein, a self-powered wireless sensing and mangosystem based on a spring-assisted
MTENG is proposed and demonstrated to remotely tapmeal-time vibration. The designed
MTENG works in a vertical contact-separation modesddl on triboelectrification between
nanostructured polytetrafluoroethylene (PTFE) alwmaum surfaces, which produces output

power. Among the eight units that constitute theBWTG, the lower 7 units are connected to the



regulated energy management module (EMM) througerabedded full bridge rectifier unit.
The EMM can deliver an output voltage of 3.1-3.aM a pulsed output current of 100 mA,
which can charge a 2.2 mF capacitor to 3 V in 2d@nsds. Vibration signals are collected by
the top TENG unit and transmitted wirelessly to tiple receivers in every ~20 seconds marking
a significant step towards real-time deploymentdpplications such as IoT, structural health
monitoring, autonomous vehicles etc. The long-teghability of the MTENG output and the RF
transmission capability is also tested without emgrruption for ~38 000 cycles.

2. Material modifications, Structural optimization and System design

The self-sustainable wireless vibration monitorgygtem is composed of an energy harvesting
part, a sensing part, and a circuit part. In thetdled MTENG (Figure 1(a)), each TENG unit
consists of a nanostructured Aluminium (Al) foil darPolytetrafluoroethylene (PTFE) as
triboelectrically positive and negative layers, pedively. To produce nanostructured PTFE
surface, 10 nm gold (Au) was deposited on the P3&itace by e-beam evaporation to form
nanoparticles. The shadowing effect of the thinnanoparticles is key to the formation of PTFE
nanowire arrays on the surface. ICP (Inductively@ed Plasma) ionic milling was employed to
etch the polymer films with an operation tempertoir 55 C and pressure of 15 mTorr. Figure
1 a (i) shows the scanning electron microscopy (pEMge of the PTFE nanostructure surface
etched for 2 minutes. The Al film was immersed ot Heionized (DI) water at 120 for 20
minutes to achieve the desired nanostructures F8ure 1a (ii) shows the SEM image of the
etched Al surface, covered uniformly with nanosiuues with dimensions less than 200 nm to
increase the effective contact area. Finally, a 1@8thick kapton film was shaped to a zigzag
structure by making deformations at the evenly s@dntervals which serves as the substrates

for the eight TENG units on both sides as sketéhddgure 1(a).
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The top TENG unit was used for sensing purpose taedrest of the units were used for
harvesting mechanical energy. Then the whole desieacapsulated to the top unit of the spring
assisted structure as illustrated in Figure 1)b, c

To design the reliable wireless node, the rectifiatputs of the seven TENGs were connected to
the EMM, to regulate and store the harvested enagggemonstrated in Figure 2(a, b). Once the
input capacitor was fully charged, an output capaavas connected to and charged by the input
capacitor via the EMM. This two-stage charging egstis much more efficient than a single-
stage charging system. The RF module was conndotdde output capacitor via a linear
switching regulator to minimize the leakage curreéhtdischarging level controller of output
capacitor based on a delay circuit had been intedilas well to control the data transmission
frequency.

Then the high impedance TENG sensor was interfagtédthe RF module by an operational
amplifier (Op-Amp) based impedance matching umitly) as shown in Figure 2 (c). The system
was pre-set to operate for ~ 1 second per cyclenglwhich the measured signal (from the top
TENG unit via an impedance matching unit, Figue)2 was sampled, digitized and transmitted
wirelessly to remote receivers. The designed EMM,RF module, and the impedance matching
unit were integrated on a 1.5 cm x 1.5 cm printecuc board (PCB) and were placed in the
lower segments of the device (Figure 2 (e, f)). Dheck diagram of the whole self-powered
sensing system is illustrated in Figure 2 (g). $istem was tested under vibration conditions in
different contexts: a linear mechanical shaker,uaning car, human hand tapping. The
experimental results are presented in the folloveection.

3. Resultsand Discussion



The working principle of each TENG unit is demoattd in Figure 3(a). Herein, at first, the
contact between the top Al electrode and the PTitace creates positive triboelectric charges

on the top electrode and negative charges on tik& Riirface (state i). Then the separation
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Figure 3. Theoretical simulation and output perfante of the multifunctional TENG (a) Schematic daeg
showing the working principle of the MTENG. (b) Sikated potential distribution of the MTENG at fadifferent
displacement condition (i-iv) by COMSOL software. {d) Measured output voltage and rectified shodudt
current of the MTENG with a frequency of ~ 5 Hz) féeasured output power of the MTENG with a frequeaf
~5 Hz and applied force of ~7 N. (f) Comparisonhd# rectified output current at different frequerxgitation of a

linear motor (Inset (i) showing the displacementiation of the linear motor with different frequées.

between the top electrode and the PTFE film proslacdifference in electric potential between
the two electrodes, which drives the flow of fréec&rons from the bottom electrode to the top
one (state ii). The current continues until thegtgl separation reaches the maximum (state iii).
When the two surfaces of thep electrode and the bottom PTFE surface get ¢msach other,
the free electrons flow from the top electrode bixkhe bottom one, thus generating a reverse
current (state iv). In order to test the power gatien capability of the MTENG, firstly the
output voltage was measured with a frequency oHz and external force of 7 N applied from a
hammer of an electrodynamic shaker and was cotleafth a TDS 2004C oscilloscope. As
shown in Figure 3(b) the peak-to-peak output vatligm the top TENG unit is ~ 700 V and the
maximum peak output voltage reaches to ~ 400 VihBworetically validate the result, finite

element simulations were performed using COMSOlgyfé 3 (c)). Based on the electron



affinity of PTFE (-190 nC 3 and the applied mechanical force (7 N correspantth potential
energy of ~ 0.035 J), a maximum surface chargeityeddSCD) ~ 6.65 uC M is expected. The
MTENG device exhibited a peak output voltage of00 4/, corresponding to a surface charge
density of ~ 3.75 uC i which is ~ 56% of the theoretical MSCD (~ 6.65 pC). It was
previously reported that triboelectric materialswoat attain the MSCD due to the limitations
imposed by air breakdown, thermal fluctuations hanchidity in the environment [50].

Then the output current from the device was measiyeconnecting all TENG units in parallel,
and after rectification the average output curreathed to ~ 300 pA with normal hand pressing
(Figure 3 (d)). It can be seen from the output enfrrsignal that the rectified output current
displays a higher peak followed by a lower peakach cycle. The higher peak is from pressing
motion while the lower one is from releasing motidhis can be explained by the fact that the
contact between the two tribo layers, as a resuitaad tapping, occurs more rapidly than their
separation (due to the slow self-releasing of tgtdn substrate). The high output current from
the device is attributed to the nanostructuredesarimodifications of PTFE and Al as well as the
proper encapsulation of the device in the kaptdmssate. For comparison, another eight-unit
TENG device without any surface modifications wkakricated and the measured short circuit
current output of this device was only ~150 pA unttee same testing condition. The as-
fabricated device and its output short circuit eatrare shown in Figure S1 and Figure S2,
respectively. The output current fluctuation fromeaunit to another can be attributed to different
motion states of each TENG unit and non-uniforroityhe air gap between them.

Subsequently, different resistors were used tostigate the reliance of the output electric power
of MTENG to the external load. The correspondingtantaneous output power as a function of
the load resistance (PR) is presented in Figure 3(e). The maximum oufmuter of ~10 mW

and the corresponding power density of ~ 4 Wvere achieved at a load resistance of @ M

10



and with a hand-tapping frequency of ~ 5 Hz, whekufficient for powering up the whole RF
module sustainably. The decrease in the matchadtarse of the TENG with eight units
compared to the TENG with a single unit is attrdgtto the increase in total capacitance,
according to the matched resistance expressiofwd 51-53].

The effect of the vibration frequency of the linedraker on the output performance of the
MTENG was also investigated. An iron mass of 0.5Mas attached to the spring-supported top
plate of the MTENG and the combined output curvess measured with a constant acceleration
of 1g. With 5 mm peak-to-peak vibration displacem&om the linear shaker at 10 Hz, the
combined output current from the devices was ~ 30 pThe output current drops as the
frequency increases from 10 Hz to 60 Hz (Figurg)3{the displacement profile of the linear
shaker with the same acceleration condition is shamw the inset (i) of Figure 3(f). The
correlation between the short circuit current amel displacement implies that the amplitude of
vibration plays a critical role in TENG output pamihance.

In order to verify the MTENG as the sustainable powource for the wireless sensing, the

generated electricity from each TENG unit needsetgtored in different commercial capacitors.
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Figure 4. The charging capability of the MTENG tivd the wireless node and sensing characterigptimization.
(a) The measured output voltage across various @oiah capacitors, charged by the MTENG, whilegeed by
hand tapping. (b) Measured output voltage acrossirthut and output capacitor of the EMM, when theeCSs
connected with it and MTENG is excited with thelghg of the linear motor running at 10 Hz. (c-dys#-up view
of the measured waveforms in Figure 4(b), is intilicavoltage controlled two stage charging strategy The

output voltage of the top TENG unit at a resistapic250 K2 and with different frequencies.

As a higher output voltage level of the input cajeaqCiy) of the EMM can reduce the charging

time of the output capacitor ¢gr), the EMM was designed to charge the input capacg.8
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HMF) up to 16 V, which effectively utilized the higlutput voltage feature of TENG. Figure 4(a)
displays the charging characteristics of differemtnmercial capacitors with the MTENG up to
3V. As triggered by hand pressing the chargingtoha 2.2 mF, 1 mF and 470 pF capacitors
were 240 s, 110 s and 50 s, respectively. Expetmhessults (Figures S3) show that the higher
energy storage in the input capacitor enhancesetteegy transfer efficiency to the output
capacitor and thus reduces the charging time obtitput capacitor significantly. Also, this two
stage charging strategy for MTENG was compared withdirect charging method of output
capacitor (Figure S4) and dictated almost 3 tinasgef charging response.

To calibrate the energy harvesting and data adgungransmission of the system, a function
generator was employed to produce standard sigoalee SoC. A sinusoidal signal and a
triangular signal of 1V peak-to-peak were appliedhte SoC input and the whole system was
powered by the MTENG instead of any external poweurce. The received signals are
deciphered with a Bluetooth low energy scanner waittamplitude accuracy of £ 0.1 V and also
the wave-shape is conserved (Figure S5). A maximti20 sampling points were collected to
reconstruct the transferred signal in each RF m#sson, where the sampling frequency was set
to 650 Hz. The supplementary video 1 and suppleangntideo 2 demonstrate the full-
functioning TENG-powered RF transmission systemil&®jfmowering up the SoC, the measured
voltages across the input capacitofjGnd the output capacitor ¢Gr) of the EMM are shown

in Figure 4(b) .The TENG units start scavenging ma@ical energy from the shaking of the
linear motor from 12 s, and voltage of thg Gtarts to increase (Figure 4(b)). When the voltage
of the input capacitor reaches 16 V, the buck cdrves switched on to charge the s and
regulates the output voltage to different spedénels. A, B, C, D, E, and F are indicating six
different regulated voltage levels of ~ 0.81V, 2M3~1.76 V, ~2.17V, 2.47 V, and ~3.1V as

shown in Figure 4(d). After the RF module consuraesergy from the output capacitor, and
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voltage of the Gur drops from 3.1 V to a preset value of ~1 V. In thiowing cycles; the RF
transmission occurs in every ~20 s as the capadigysr and Gy are charged from ~1 V and ~
12 V, respectively, rather than from 0 V, as theeci the first cycle. The transferred energy to
the output capacitor and received energy by thpulwtapacitor can be calculated by extracting

the initial and final values of each peak from Fegd(d) as

=n
1
Esent = > Cin Z(Vizlitial,i - szinal.i) €Y)
i=1
and
i=n

1
EReceivea = > Cour Z(szinal,i — Viitiari) (2)

i=1

The calculated transferred energy to thg,Cis 3.15 mJ and the received energy is ~0.8 mJ,
which shows an energy transfer efficiency of ~26/@#hen sending one RF signal, the voltage of
Cour drops from 3.1 V to 1 V within ~1 s working timétbe transmitter, corresponding to ~ 0.2
mW of average power dissipation as shown in Fiié6eThe more detailed theoretical analysis
on energy transfer efficiency and power consumptalculation has been presented in the
supplementary information section (see section J).

Following the demonstration with the mimic signaisp TENG unit was used as a sensor to
collect the real vibration signals to be transmditt@relessly. Therefore, before integrating the
TENG sensor with the SoC, output voltages were @sasured under the vibration of the linear
shaker at 1g acceleration and with the frequermid®, 15 and 20 Hz and corresponding peak-
to-peak output voltages are illustrated in Figurée} The gradual decrease in output voltage
depicts the reduction of mechanical displacementhef linear shaker with the increase in
frequency which in turns weakens the contact efettion process. The optimum frequency of

the MTENG is

14
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harnessing energy from the vibration of an elegtnagnic shaker, running at a frequency of 20 Hz and
acceleration of 1 G. (b) The Photograph is dematisty the multi-broadcasting of TENG sensor infatiora to

various smartphones, when triggered by hand tapgmgrhe MTENG harvesting energy from automobilgiae

vibration and transmitting the sensor signal wislg to the remote receiver.
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Determined primarily by the spring supported suetand the output performance is higher at a
lower frequency, which may comply with the resorfaauency (~ 2 Hz) of the device.

Figure 5 (a) illustrates the experimental arranggnveith the MTENG on top of the linear
shaker running at a frequency of 20 Hz and 1g acatbn. Here, the MTENG has been utilized
to detect oscillation frequency of the linear mdigrseeking the peak amplitude from the TENG
sensor output. Any smartphones can be employeéceive this sensor information wirelessly,
that will indicates the peak amplitude and freqyeofcthe TENG sensor output. As triggered by
the oscillation of the shaker, MTENG empowers thgpot capacitor and wirelessly transmits
the sensor signals. The received signals whichdacgphered by Bluetooth low energy (BLE)
scanner, indicates a peak value of 1.48 V (Figuf@)p which is close to the maximum value of
the TENG sensor before the transmission beginsi(€id (e)). As the analog to digital converter
of the SoC allows only the positive value of thgnsil input, the TENG sensor output is rectified
by a single diode to allow only the positive hajtle to be transmitted to the mobile receiver.
The pulse width in the smartphone display provittes number of sampling points used to
represent the positive half cycle of sensor outptnich is used to identify the frequency from
the correlation with the ADC sampling rate. Withialf of a pulse period in the received signal,
the number of the sampling points is counted toNs&7 (Figure 5 (a)), which is used to
calculate the pulse frequency as (N/682)= 19.1+1.1 Hz. This is very close to the real
vibration frequency of the electrodynamic shakér &) in this test.

Furthermore, to verify the multi-broadcasting caligb of the MTENG, it was used to
successfully scavenge biomechanical energy to paethe whole SoC (Figure 5(b)). The
supplementary video 3 demonstrates the wirelesshsimitted TENG sensor signals received by

multiple smartphones within ~15 s of hand tappinth\an average frequency of ~ 5 Hz. As for
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low-frequency applications (<10 Hz), the signalitizgtion sampling rate could be tuned higher
so that the extracted frequency after data trarssomsan be more accurate.

Finally, the device was used for harnessing enérgy a running and vibrating automobile
engine. The device was placed and fixed betweenyéllew crash bar and the engine to
effectively harvest energy from the engine vibnat{gigure 5(c)). To isolate the device from the
heat generated by the engine, a thick insulatiggrlaf foam was inserted between the device
and the engine. The scanning time of the BLE saawas set to a longer period of around 30
minutes, so that wireless data transmitted by thEENIG is not unnoticed. As the engine
started, the spring-assisted free moving top platstied the device in an up-down direction and
after running the car almost ~15 minutes, the deWansmitted the sensor signal wirelessly to
the receiver. The corresponding outdoor receiveghadi by the smart phone receiver is
demonstrated in Figure 5(c). This successfully destrates the potential deployment of this
prototype system in a real application scenaricarvésting sufficient energy from automobile
engine vibration for wireless data transmissiore Téliability of the MTENG was also carefully
studied at a frequency of 10 Hz and an acceleratialg, which shows negligible decrease of
output over ~38000 cycles of operation (Figure ®8spite of indoor reflection and shielding,
the receiver was also able to receive wirelesslysmitted sensor information at a distance of up
to 12 m (Figure S8).

4. Conclusions

In summary, we present an all-in-one nanostrudbaseed integrated multifunctional TENG with
an improved structural design to develop a selfgr@d multi-broadcasting wireless sensing
system. The fabricated MTENG can produce a highuuturrent of up to ~ 300 pA and output
power of ~10 mW by scavenging ambient mechanicatgn Different commercial capacitors

can be charged to 3-3.6 V in a highly efficient vihgough an optimized energy management
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module (EMM). Through the innovative structural igaesof the MTENG, and the correlation of
output with the ambient vibration frequency, it d@nutilized as a vibration sensor and as energy
harvester units; the EMM unit collects, stores arahages the generated electrical energy; a RF
wireless module is then powered to transmit theratibn signal to multiple receivers
simultaneously. The self-powered system can sendetransmit the vibration amplitude and
frequency of a linear mechanical shaker up to tadee of 12 meters in every ~20 seconds.
Moreover, the whole functions of the self-poweredt@ype system has been validated under
different application scenarios including runninghicles, biomechanical motion etc. This
system can be further modified with multiple peremainstorages to power up many wireless
nodes. This direct integration of the TENG devigéh a Bluetooth supported SoC will benefit
a myriad of applications, especially in structurahlth monitoring, automobile engine vibration

monitoring, and biomechanical applications.

5. Experimental Section

Nanostructured surface preparation: Each TENG unit consists of a nanostructured Al &t
Polytetrafluoroethylene (PTFE) as triboelectricalysitive and negative layers. For producing a
nanostructured PTFE surface, 10 nm gold (Au) wagsosieed on PTFE surface by e-beam
evaporation and shadowing effect of the thin Auapamticles was employed as a key to the
formation of PTFE nanowire arrays on the surface. Wed ICP (Inductively Coupled Plasma)
ionic milling to etch the polymer films by using AD, and CFk as the etching gases. After the
nanoscale masking with the Au nanoparticles onPhEE surface, Ar, @and Chk gases were
introduced into the ICP chamber with the flow rata¥ 15.0, 10.0 and 30.0 sccm (standard cubic

centimeter per minute), respectively. The operat@nperature was 8& with a pressure of 15
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mTorr. For generating a large density of the plastma AC power of 400 W was used while the
DC power of 100 W was used to accelerate the plasngtowards the PTFE surface. After 2
minutes of etching, the nanostructure is showniguié 1(a-i) was achieved. To increase the
effective contact area of the Al film the surfacasaetched into nanostructures by using a simple
method, whereby the Al film was immersed in hotodéed water at 12C for 20 minutes, as
described in detail elsewhere [49]

Fabrication of the all-in-one TENG: The length and width of the MTENG package is 6.5>cm
6.5 cm having 2 cm of total height. The structupatains two units; the top unit is containing
the TENG units and the bottom unit contains theutis. As shown in Figure 1(a), the
mechanical structure was made of three aluminurteplaf 6.5 cm x 6.5 cm x 0.5 cm. Four
aluminum blocks with a height of 0.5 cm were atetto the bottom plate to support the middle
plate. Another four iron bars with a height of 2@ were inserted through the aluminum blocks
to reinforce the top plate. The top plate was desigto remain flexible by coiling the iron bars
with four springs. Each of the spring has a spdogstant of 0.07 Ib/inch.

The device is sandwiched between the top and migtdée while bottom unit remains
immovable due to the fixed aluminum blocks in ordercarry the rectification unit, EMM
module and RF module. In addition, the middle plisteeovered with 120 pm thick kapton
insulator to provide proper electrical isolatiom fhe device. Finally, four acrylic sheets with 0.5
cm thickness were attached with each sides of ¢vece which serves as a protecting shield as
well as a stopper for the top plate.

Circuit design: An integrated printed circuit board of 1.5 cm x T was designed, which
includes eight rectification units, an energy mamagnt unit, and a signal processing and
transmission unit (RF module) ((Figure 2)). Thetifesed output currents from the parallelly-

connected TENGs are used to store in the inputottapeof the EMM to charge the output
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capacitor more efficiently. The linear regulatordute in the EMM is used as a switch to power
the RF module when the output voltage of the outppicitor reaches its regulation point and is
enabled till the logic level reaches 92% of itskpealue. In order to control the discharging level
of the output capacitor, a 0.1 pF capacitor in [eravith 8 MQ resistor was connected with the
logic line of the EMM module through a diode thatefmines the discharging time. The EMM
is connected with the RF module which is a prograitmm system on chip and supported by the
Bluetooth technology. The TENG sensor is integratéti the SoC through an Op-Amp based
impedance matching unit. The designed RF modugetido operate 1 second and used to find
the sensor peak value by comparing up to 100 sappfds within the set time, which is also
crucial for the power consumption of the micropssm. The threshold for the comparison
between the sample points is set to 200 mV to tiyese the peak amplitude of the TENG

sensor and the sampling frequency is fixed at 656@okHthe specific case study.
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A Self-powered Multi-broadcasting Wireless Sensing System Realized with an

All-in-one Triboelectric Nanogener ator

Highlights:

» A nove al-in-one triboelectric nanogenerator enabling multi-broadcasting wireless

>

>

monitoring system.

Integration of organic/inorganic nanostructured materials leads to higher energy
conversion efficiency and reliable wireless monitoring.

The unique compact and portable device design incorporate an optimized TENG sensor
and TENG harvester together with integrated energy management, storage and RF
transmission modul e to detect vibration characteristics in awide range of frequencies.

A very promising nanogenerator in designing a self-powered structural health monitoring
system in an automobile engine, jet engine, etc. due to mechanical robustness, high
output, repeatability, and long-term reliability.



