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Abstract: The ubiquitous sensors at the core network of Internet of Things (IoT) have 

accelerated the realization of micro/nano systems that necessitate not only the development of 

self-powered sensors but also requires a reliable wireless communication mode. Here, a self-

powered multi- broadcasting wireless sensing system based on an all-in-one triboelectric 

nanogenerator (TENG) is reported, which can simultaneously power up a custom-made wireless 

node and act as a sensor. The whole device and the system are encapsulated in a unique compact 

structure, in which the top segment consists of a spring-assisted multifunctional TENG 

(MTENG) and, the bottom section contains an integrated energy management and Bluetooth 

transmitter module. Following the structural and material modifications, the top unit of the 

MTENG is used to detect vibration frequency and amplitude by correlation with the TENG 

output voltage. The device has been employed to successfully detect the running frequency of a 

linear shaker and various generated signals. Owing to the nanostructured material surfaces, the 

device yields an output current of 300 µA and a power density of 4 W/m2 with the normal hand 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 
 

pressing. Moreover, the developed portable MTENG is also assessed to remotely monitor 

automobile engine vibration and is expected to result in a myriad of applications. 

 1. Introduction 
 

 

In the era of Internet of Things (IoT), the widespread existence of sensors have not only brought 

great convenience to our lives but has also raised consequential challenges in achieving a 

wireless sensor network (WSN) with sustainable power supply and reliable wireless 

communication [1-2]. To power up the distributed sensor nodes in WSNs using batteries is 

unrealistic since commercial Li-ion batteries have a limited lifetime and the maintenance cost 

can be prohibitively expensive. An alternative solution is to use an energy-scavenging device in 

lieu of a Li-ion battery to harvest energy from the ambient environment for sustainable power 

supply.  Over the past decades, various efforts have been devoted to harvest energy from 

different environmental energy sources such as vibration, water and wind, using electromagnetic 

[3, 4, 5-7], electrostatic [8-10], and piezoelectric methods [11, 12, 13-14]. Recently, triboelectric 

nanogenerators (TENGs) based on the coupling effect of contact electrification and electrostatic 

induction have emerged as a persuasive technology to convert ambient mechanical energy into 

electric energy with numerous advantages, including large power density, high energy 

conversion efficiency, versatile options for material selection, light weight, low cost etc. [15-26]. 

Until now, four modes of TENGs have been significantly investigated – lateral sliding mode, 

vertical contact-separation mode, freestanding mode, and single-electrode mode. These can 

scavenge almost all types of mechanical energy from the environment [27, 28, 29-30]. In 

addition, they have successfully been used as self-powered sensors in wind speed sensing, micro 

liquid biological and chemical sensing, vibration monitoring, transportation and traffic 

management, motion tracking, powering biomedical microsystems, among others [31-40]. 
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However, due to the randomness of mechanical energy sources as well as the high internal 

impedance and low output current of TENGs, their integration with a practical application 

system is still challenging. After the first demonstration in 2012, there have been remarkable 

progresses in the device development of TENGs [41-42], but few studies have carefully 

addressed the efficient integration of a self-powered system [43-46]. 

In a real-time sensing system, the measured signals need to be processed first, and then 

transmitted to a central station via one of the different RF techniques, such as wireless local area 

networks (WLAN), Cellular, Bluetooth, Zigbee, or Radio-frequency identification (RFID). The 

inclusion of a signal processing unit and wireless transmission unit imposes a very demanding 

power supply requirement, given that the power output from most of the energy harvesters under 

real-life vibration conditions is relatively low. Recently, a self-powered system integrating 

different function modules was presented, however, it does not incorporate a sensing unit [47]. In 

another study, although a self-powered system with two separate piezoelectric and triboelectric 

nanogenerator units enabled transmitting pre-coded signals [48], the low output power from the 

system may not guarantee sustainable and reliable wireless data transmission.  

To address the aforementioned issues, one possible solution can be the development of an all-in-

one or multifunctional triboelectric nanogenerator (MTENG), which can simultaneously act a 

sensor and as energy harvester to operate the whole RF transmitter and signal processor unit.  

Herein, a self-powered wireless sensing and monitoring system based on a spring-assisted 

MTENG is proposed and demonstrated to remotely monitor real-time vibration. The designed 

MTENG works in a vertical contact-separation mode based on triboelectrification between 

nanostructured polytetrafluoroethylene (PTFE) and aluminum surfaces, which produces output 

power. Among the eight units that constitute the MTENG, the lower 7 units are connected to the 
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regulated energy management module (EMM) through an embedded full bridge rectifier unit. 

The EMM can deliver an output voltage of 3.1-3.6 V and a pulsed output current of 100 mA, 

which can charge a 2.2 mF capacitor to 3 V in 240 seconds. Vibration signals are collected by 

the top TENG unit and transmitted wirelessly to multiple receivers in every ~20 seconds marking 

a significant step towards real-time deployment for applications such as IoT, structural health 

monitoring, autonomous vehicles etc. The long-term reliability of the MTENG output and the RF 

transmission capability is also tested without any interruption for ~38 000 cycles. 

2. Material modifications, Structural optimization and System design 

The self-sustainable wireless vibration monitoring system is composed of an energy harvesting 

part, a sensing part, and a circuit part. In the sketched MTENG (Figure 1(a)), each TENG unit 

consists of a nanostructured Aluminium (Al) foil and Polytetrafluoroethylene (PTFE) as 

triboelectrically positive and negative layers, respectively. To produce nanostructured PTFE 

surface, 10 nm gold (Au) was deposited on the PTFE surface by e-beam evaporation to form 

nanoparticles. The shadowing effect of the thin Au nanoparticles is key to the formation of PTFE 

nanowire arrays on the surface. ICP (Inductively Coupled Plasma) ionic milling was employed to 

etch the polymer films with an operation temperature of 55o C and pressure of 15 mTorr. Figure 

1 a (i) shows the scanning electron microscopy (SEM) image of the PTFE nanostructure surface 

etched for 2 minutes. The Al film was immersed in hot deionized (DI) water at 120oC for 20 

minutes to achieve the desired nanostructures [49]. Figure 1a (ii) shows the SEM image of the 

etched Al surface, covered uniformly with nanostructures with dimensions less than 200 nm to 

increase the effective contact area. Finally, a 128 µm thick kapton film was shaped to a zigzag 

structure by making deformations at the evenly spaced intervals which serves as the substrates 

for the eight TENG units on both sides as sketched in Figure 1(a). 
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Figure 1. Structure design of the MTENG (a) Schematic illustration of the functional components of MTENG, 

which is mainly composed of a TENG units and an integrated circuit unit. (i-ii) Scanning electron microscope 

(SEM) images of the nanostructured PTFE and Al surfaces. A photograph of (b) an as-fabricated MTENG (before 

encapsulation with the acrylic) (c) an as-fabricated MTENG (after encapsulation with the acrylic).  
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Figure 2. Design strategy towards achieving an all-in-one MTENG based multi-broadcasting wireless sensing 

system. (a) Signal rectification units (b) Energy management unit (c) TENG sensor interfacing by impedance 

matching unit (d) Signal processing and RF module (e-f) Top and bottom view of the manufactured PCB (g) System 

illustration with the aid of a block diagram 
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The top TENG unit was used for sensing purpose and the rest of the units were used for 

harvesting mechanical energy. Then the whole device is encapsulated to the top unit of the spring 

assisted structure as illustrated in Figure 1 (b, c). 

To design the reliable wireless node, the rectified outputs of the seven TENGs were connected to 

the EMM, to regulate and store the harvested energy, as demonstrated in Figure 2(a, b). Once the  

input capacitor was fully charged, an output capacitor was connected to and charged by the input 

capacitor via the EMM. This two-stage charging system is much more efficient than a single-

stage charging system. The RF module was connected to the output capacitor via a linear 

switching regulator to minimize the leakage current. A discharging level controller of output 

capacitor based on a delay circuit had been introduced as well to control the data transmission 

frequency. 

Then the high impedance TENG sensor was interfaced with the RF module by an operational 

amplifier (Op-Amp) based impedance matching unit (IMU) as shown in Figure 2 (c). The system 

was pre-set to operate for ~ 1 second per cycle, during which the measured signal (from the top 

TENG unit via an impedance matching unit, Figure 2 (c)) was sampled, digitized and transmitted 

wirelessly to remote receivers. The designed EMM, the RF module, and the impedance matching 

unit were integrated on a 1.5 cm × 1.5 cm printed circuit board (PCB) and were placed in the 

lower segments of the device (Figure 2 (e, f)). The block diagram of the whole self-powered 

sensing system is illustrated in Figure 2 (g). The system was tested under vibration conditions in 

different contexts: a linear mechanical shaker, a running car, human hand tapping. The 

experimental results are presented in the following section. 

3. Results and Discussion 
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The working principle of each TENG unit is demonstrated in Figure 3(a). Herein, at first, the 

contact between the top Al electrode and the PTFE surface creates positive triboelectric charges 

on the top electrode and negative charges on the PTFE surface (state i). Then the separation  
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Figure 3. Theoretical simulation and output performance of the multifunctional TENG (a) Schematic diagram 

showing the working principle of the MTENG. (b) Simulated potential distribution of the MTENG at four different 

displacement condition (i-iv) by COMSOL software. (c -d) Measured output voltage and rectified short-circuit 

current of the MTENG with a frequency of ~ 5 Hz. (e) Measured output power of the MTENG with a frequency of 

~5 Hz and applied force of ~7 N. (f) Comparison of the rectified output current at different frequency excitation of a 

linear motor (Inset (i) showing the displacement variation of the linear motor with different frequencies.   

between the top electrode and the PTFE film produces a difference in electric potential between 

the two electrodes, which drives the flow of free electrons from the bottom electrode to the top 

one (state ii). The current continues until the physical separation reaches the maximum (state iii). 

When the two surfaces of the top electrode and the bottom PTFE surface get close to each other,                                                           

the free electrons flow from the top electrode back to the bottom one, thus generating a reverse 

current (state iv). In order to test the power generation capability of the MTENG, firstly the 

output voltage was measured with a frequency of ~ 5 Hz and external force of 7 N applied from a 

hammer of an electrodynamic shaker and was collected with a TDS 2004C oscilloscope. As 

shown in Figure 3(b) the peak-to-peak output voltage from the top TENG unit is ~ 700 V and the 

maximum peak output voltage reaches to ~ 400 V. To theoretically validate the result, finite 

element simulations were performed using COMSOL (Figure 3 (c)). Based on the electron 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 
 

affinity of PTFE (-190 nC J-1) and the applied mechanical force (7 N corresponding to potential 

energy of ~ 0.035 J), a maximum surface charge density (MSCD) ~ 6.65 µC m-2 is expected. The 

MTENG device exhibited a peak output voltage of ~ 400 V, corresponding to a surface charge 

density of ~ 3.75 µC m-2, which is ~ 56% of the theoretical MSCD (~ 6.65 µC m-2). It was 

previously reported that triboelectric materials cannot attain the MSCD due to the limitations 

imposed by air breakdown, thermal fluctuations and humidity in the environment [50]. 

Then the output current from the device was measured by connecting all TENG units in parallel, 

and after rectification the average output current reached to ~ 300 µA with normal hand pressing 

(Figure 3 (d)). It can be seen from the output current signal that the rectified output current 

displays a higher peak followed by a lower peak in each cycle. The higher peak is from pressing 

motion while the lower one is from releasing motion. This can be explained by the fact that the 

contact between the two tribo layers, as a result of hand tapping, occurs more rapidly than their 

separation (due to the slow self-releasing of the kapton substrate). The high output current from 

the device is attributed to the nanostructured surface modifications of PTFE and Al as well as the 

proper encapsulation of the device in the kapton substrate. For comparison, another eight-unit 

TENG device without any surface modifications were fabricated and the measured short circuit 

current output of this device was only ~150 µA under the same testing condition. The as-

fabricated device and its output short circuit current are shown in Figure S1 and Figure S2, 

respectively. The output current fluctuation from one unit to another can be attributed to different 

motion states of each TENG unit and non-uniformity of the air gap between them. 

Subsequently, different resistors were used to investigate the reliance of the output electric power 

of MTENG to the external load. The corresponding instantaneous output power as a function of 

the load resistance (P=I2R) is presented in Figure 3(e). The maximum output power of ~10 mW 

and the corresponding power density of ~ 4 W/m2 were achieved at a load resistance of 1 MΩ 
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and with a hand-tapping frequency of ~ 5 Hz, which is sufficient for powering up the whole RF 

module sustainably. The decrease in the matched resistance of the TENG with eight units 

compared to the TENG with a single unit is attributed to the increase in total capacitance, 

according to the matched resistance expression of 1/�C [51-53].  

The effect of the vibration frequency of the linear shaker on the output performance of the 

MTENG was also investigated. An iron mass of 0.5 kg was attached to the spring-supported top 

plate of the MTENG and the combined output current was measured with a constant acceleration 

of 1g. With 5 mm peak-to-peak vibration displacement from the linear shaker at 10 Hz, the 

combined output current from the devices was ~ 30 µA.  The output current drops as the 

frequency increases from 10 Hz to 60 Hz (Figure 3(f)). The displacement profile of the linear 

shaker with the same acceleration condition is shown in the inset (i) of Figure 3(f). The 

correlation between the short circuit current and the displacement implies that the amplitude of 

vibration plays a critical role in TENG output performance.  

In order to verify the MTENG as the sustainable power source for the wireless sensing, the 

generated electricity from each TENG unit needs to be stored in different commercial capacitors. 
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Figure 4. The charging capability of the MTENG to drive the wireless node and sensing characteristics optimization. 

(a) The measured output voltage across various commercial capacitors, charged by the MTENG, while triggered by 

hand tapping. (b) Measured output voltage across the input and output capacitor of the EMM, when the SoC is 

connected with it and MTENG is excited with the shaking of the linear motor running at 10 Hz. (c-d) close-up view 

of the measured waveforms in Figure 4(b), is indicating voltage controlled two stage charging strategy. (e) The 

output voltage of the top TENG unit at a resistance of 250 kΩ and with different frequencies.  

As a higher output voltage level of the input capacitor (CIN) of the EMM can reduce the charging 

time of the output capacitor (COUT), the EMM was designed to charge the input capacitor (6.8 
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µF) up to 16 V, which effectively utilized the high output voltage feature of TENG. Figure 4(a) 

displays the charging characteristics of different commercial capacitors with the MTENG up to 

3V.  As triggered by hand pressing the charging time of a 2.2 mF, 1 mF and 470 µF capacitors 

were 240 s, 110 s and 50 s, respectively. Experimental results (Figures S3) show that the higher 

energy storage in the input capacitor enhances the energy transfer efficiency to the output 

capacitor and thus reduces the charging time of the output capacitor significantly. Also, this two 

stage charging strategy for MTENG was compared with the direct charging method of output 

capacitor (Figure S4) and dictated almost 3 times faster charging response. 

To calibrate the energy harvesting and data acquisition/transmission of the system, a function 

generator was employed to produce standard signals to the SoC.  A sinusoidal signal and a 

triangular signal of 1V peak-to-peak were applied to the SoC input and the whole system was 

powered by the MTENG instead of any external power source. The received signals are 

deciphered with a Bluetooth low energy scanner with an amplitude accuracy of ± 0.1 V and also 

the wave-shape is conserved (Figure S5). A maximum of 20 sampling points were collected to 

reconstruct the transferred signal in each RF transmission, where the sampling frequency was set 

to 650 Hz. The supplementary video 1 and supplementary video 2 demonstrate the full-

functioning TENG-powered RF transmission system. While powering up the SoC, the measured 

voltages across the input capacitor (CIN) and the output capacitor (COUT) of the EMM are shown 

in Figure 4(b) .The TENG units start scavenging mechanical energy from the shaking of the 

linear motor from 12 s, and voltage of the CIN starts to increase (Figure 4(b)). When the voltage 

of the input capacitor reaches 16 V, the buck converter is switched on to charge the COUT and 

regulates the output voltage to different specific levels. A, B, C, D, E, and F are indicating six 

different regulated voltage levels of ~ 0.81V, ~1.32V, ~1.76 V, ~2.17V, 2.47 V, and ~3.1V as 

shown in Figure 4(d). After the RF module consumes energy from the output capacitor, and 
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voltage of the COUT drops from 3.1 V to a preset value of ~1 V. In the following cycles; the RF 

transmission occurs in every ~20 s as the capacitors COUT and CIN are charged from ~1 V and ~ 

12 V, respectively, rather than from 0 V, as the case in the first cycle. The transferred energy to 

the output capacitor and received energy by the output capacitor can be calculated by extracting 

the initial and final values of each peak from Figure 4(d) as 

																										����� =
1
2��
����������,�� − ������,�� �																(1)

���

���
 

and                  

																														�������� =
1
2�!"#��������,�� − ��������,�� �											(2)							

���

���
 

 

The calculated transferred energy to the COUT is 3.15 mJ and the received energy is ~0.8 mJ, 

which shows an energy transfer efficiency of ~26 %. When sending one RF signal, the voltage of 

COUT drops from 3.1 V to 1 V within ~1 s working time of the transmitter, corresponding to ~ 0.2 

mW of average power dissipation as shown in Figure S6. The more detailed theoretical analysis 

on energy transfer efficiency and power consumption calculation has been presented in the 

supplementary information section (see section J). 

Following the demonstration with the mimic signals, top TENG unit was used as a sensor to 

collect the real vibration signals to be transmitted wirelessly. Therefore, before integrating the 

TENG sensor with the SoC, output voltages were also measured under the vibration of the linear 

shaker at 1g acceleration and with the frequencies of 10, 15 and 20 Hz and corresponding peak-

to-peak output voltages are illustrated in Figure 4 (e). The gradual decrease in output voltage 

depicts the reduction of mechanical displacement of the linear shaker with the increase in 

frequency which in turns weakens the contact electrification process. The optimum frequency of 

the MTENG is  
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Figure 5. Application of the MTENG (a) The photograph is showing the wireless sensing application of MTENG, 

harnessing energy from the vibration of an electrodynamic shaker, running at a frequency of 20 Hz and an 

acceleration of 1 G. (b) The Photograph is demonstrating the multi-broadcasting of TENG sensor information to 

various smartphones, when triggered by hand tapping. (c) The MTENG harvesting energy from automobile engine 

vibration and transmitting the sensor signal wirelessly to the remote receiver.   
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Determined primarily by the spring supported structure and the output performance is higher at a 

lower frequency, which may comply with the resonant frequency (~ 2 Hz) of the device.  

Figure 5 (a) illustrates the experimental arrangement with the MTENG on top of the linear 

shaker running at a frequency of 20 Hz and 1g acceleration. Here, the MTENG has been utilized 

to detect oscillation frequency of the linear motor by seeking the peak amplitude from the TENG 

sensor output. Any smartphones can be employed to receive this sensor information wirelessly, 

that will indicates the peak amplitude and frequency of the TENG sensor output.  As triggered by 

the oscillation of the shaker, MTENG empowers the output capacitor and wirelessly transmits 

the sensor signals. The received signals which are deciphered by Bluetooth low energy (BLE) 

scanner, indicates a peak value of 1.48 V (Figure 5 (a)), which is close to the maximum value of 

the TENG sensor before the transmission begins (Figure 4 (e)). As the analog to digital converter 

of the SoC allows only the positive value of the signal input, the TENG sensor output is rectified 

by a single diode to allow only the positive half cycle to be transmitted to the mobile receiver. 

The pulse width in the smartphone display provides the number of sampling points used to 

represent the positive half cycle of sensor output, which is used to identify the frequency from 

the correlation with the ADC sampling rate. Within half of a pulse period in the received signal, 

the number of the sampling points is counted to be N=17 (Figure 5 (a)), which is used to 

calculate the pulse frequency as (N/650)-1/2 = 19.1±1.1 Hz. This is very close to the real 

vibration frequency of the electrodynamic shaker (20 Hz) in this test.  

Furthermore, to verify the multi-broadcasting capability of the MTENG, it was used to 

successfully scavenge biomechanical energy to power up the whole SoC (Figure 5(b)). The 

supplementary video 3 demonstrates the wirelessly transmitted TENG sensor signals received by 

multiple smartphones within ~15 s of hand tapping with an average frequency of ~ 5 Hz. As for 
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low-frequency applications (<10 Hz), the signal digitization sampling rate could be tuned higher 

so that the extracted frequency after data transmission can be more accurate. 

Finally, the device was used for harnessing energy from a running and vibrating automobile 

engine. The device was placed and fixed between the yellow crash bar and the engine to 

effectively harvest energy from the engine vibration (Figure 5(c)). To isolate the device from the 

heat generated by the engine, a thick insulating layer of foam was inserted between the device 

and the engine. The scanning time of the BLE scanner was set to a longer period of around 30 

minutes, so that wireless data transmitted by the MTENG is not unnoticed.  As the engine 

started, the spring-assisted free moving top plates pushed the device in an up-down direction and 

after running the car almost ~15 minutes, the device transmitted the sensor signal wirelessly to 

the receiver. The corresponding outdoor received signal by the smart phone receiver is 

demonstrated in Figure 5(c). This successfully demonstrates the potential deployment of this 

prototype system in a real application scenario – harvesting sufficient energy from automobile 

engine vibration for wireless data transmission. The reliability of the MTENG was also carefully 

studied at a frequency of 10 Hz and an acceleration of 1g, which shows negligible decrease of 

output over ~38000 cycles of operation (Figure S7). Despite of indoor reflection and shielding, 

the receiver was also able to receive wirelessly transmitted sensor information at a distance of up 

to 12 m (Figure S8). 

4. Conclusions 

In summary, we present an all-in-one nanostructure-based integrated multifunctional TENG with 

an improved structural design to develop a self-powered multi-broadcasting wireless sensing 

system. The fabricated MTENG can produce a high output current of up to ~ 300 µA and output 

power of ~10 mW by scavenging ambient mechanical energy. Different commercial capacitors 

can be charged to 3-3.6 V in a highly efficient way through an optimized energy management 
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module (EMM). Through the innovative structural design of the MTENG, and the correlation of 

output with the ambient vibration frequency, it can be utilized as a vibration sensor and as energy 

harvester units; the EMM unit collects, stores and manages the generated electrical energy; a RF 

wireless module is then powered to transmit the vibration signal to multiple receivers 

simultaneously. The self-powered system can sense and transmit the vibration amplitude and 

frequency of a linear mechanical shaker up to a distance of 12 meters in every ~20 seconds. 

Moreover, the whole functions of the self-powered prototype system has been validated under 

different application scenarios including running vehicles, biomechanical motion etc. This 

system can be further modified with multiple permanent storages to power up many wireless 

nodes. This direct integration of the TENG devices with a Bluetooth supported SoC will benefit 

a myriad of applications, especially in structural health monitoring, automobile engine vibration 

monitoring, and biomechanical applications.  

 

 

5. Experimental Section 

Nanostructured surface preparation: Each TENG unit consists of a nanostructured Al foil and 

Polytetrafluoroethylene (PTFE) as triboelectrically positive and negative layers. For producing a 

nanostructured PTFE surface, 10 nm gold (Au) was deposited on PTFE surface by e-beam 

evaporation and shadowing effect of the thin Au nanoparticles was employed as a key to the 

formation of PTFE nanowire arrays on the surface. We used ICP (Inductively Coupled Plasma) 

ionic milling to etch the polymer films by using Ar, O2, and CF4 as the etching gases. After the 

nanoscale masking with the Au nanoparticles on the PTFE surface, Ar, O2 and CF4 gases were 

introduced into the ICP chamber with the flow ratios of 15.0, 10.0 and 30.0 sccm (standard cubic 

centimeter per minute), respectively. The operation temperature was 55o C with a pressure of 15 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 
 

mTorr. For generating a large density of the plasma, the AC power of 400 W was used while the 

DC power of 100 W was used to accelerate the plasma ions towards the PTFE surface. After 2 

minutes of etching, the nanostructure is shown in Figure 1(a-i) was achieved. To increase the 

effective contact area of the Al film the surface was etched into nanostructures by using a simple 

method, whereby the Al film was immersed in hot deionized water at 120oC for 20 minutes, as 

described in detail elsewhere [49] 

Fabrication of the all-in-one TENG: The length and width of the MTENG package is 6.5 cm × 

6.5 cm having 2 cm of total height. The structure contains two units; the top unit is containing 

the TENG units and the bottom unit contains the circuits. As shown in Figure 1(a), the 

mechanical structure was made of three aluminum plates of 6.5 cm × 6.5 cm × 0.5 cm. Four 

aluminum blocks with a height of 0.5 cm were attached to the bottom plate to support the middle 

plate. Another four iron bars with a height of 2.2 cm were inserted through the aluminum blocks 

to reinforce the top plate. The top plate was designed to remain flexible by coiling the iron bars 

with four springs. Each of the spring has a spring constant of 0.07 lb/inch.   

The device is sandwiched between the top and middle plate while bottom unit remains 

immovable due to the fixed aluminum blocks in order to carry the rectification unit, EMM 

module and RF module. In addition, the middle plate is covered with 120 µm thick kapton 

insulator to provide proper electrical isolation for the device. Finally, four acrylic sheets with 0.5 

cm thickness were attached with each sides of the device which serves as a protecting shield as 

well as a stopper for the top plate. 

Circuit design: An integrated printed circuit board of 1.5 cm × 1.5 cm was designed, which 

includes eight rectification units, an energy management unit, and a signal processing and 

transmission unit (RF module) ((Figure 2)). The rectified output currents from the parallelly-

connected TENGs are used to store in the input capacitor of the EMM to charge the output 
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capacitor more efficiently. The linear regulator module in the EMM is used as a switch to power 

the RF module when the output voltage of the output capacitor reaches its regulation point and is 

enabled till the logic level reaches 92% of its peak value. In order to control the discharging level 

of the output capacitor, a 0.1 µF capacitor in parallel with 8 MΩ resistor was connected with the 

logic line of the EMM module through a diode that determines the discharging time. The EMM 

is connected with the RF module which is a programmable system on chip and supported by the 

Bluetooth technology. The TENG sensor is integrated with the SoC through an Op-Amp based 

impedance matching unit. The designed RF module is set to operate 1 second and used to find 

the sensor peak value by comparing up to 100 sample points within the set time, which is also 

crucial for the power consumption of the microprocessor. The threshold for the comparison 

between the sample points is set to 200 mV to investigate the peak amplitude of the TENG 

sensor and the sampling frequency is fixed at 650 Hz for the specific case study. 
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A Self-powered Multi-broadcasting Wireless Sensing System Realized with an 
All-in-one Triboelectric Nanogenerator 

     
  Highlights: 
 

� A novel all-in-one triboelectric nanogenerator enabling multi-broadcasting wireless 
monitoring system. 

� Integration of organic/inorganic nanostructured materials leads to higher energy 
conversion efficiency and reliable wireless monitoring. 

� The unique compact and portable device design incorporate an optimized TENG sensor 
and TENG harvester together with integrated energy management, storage and RF 
transmission module to detect vibration characteristics in a wide range of frequencies. 

� A very promising nanogenerator in designing a self-powered structural health monitoring 
system in an automobile engine, jet engine, etc. due to mechanical robustness, high 
output, repeatability, and long-term reliability.  
 


