53 research outputs found

    Status of vaccine research and development of vaccines for Nipah virus

    Get PDF
    AbstractNipah virus (NiV) is a highly pathogenic, recently emerged paramyxovirus that has been responsible for sporadic outbreaks of respiratory and encephalitic disease in Southeast Asia. High case fatality rates have also been associated with recent outbreaks in Malaysia and Bangladesh. Although over two billion people currently live in regions in which NiV is endemic or in which the Pteropus fruit bat reservoir is commonly found, there is no approved vaccine to protect against NiV disease. This report examines the feasibility and current efforts to develop a NiV vaccine including potential hurdles for technical and regulatory assessment of candidate vaccines and the likelihood for financing

    Dnmt3a is an epigenetic mediator of adipose insulin resistance

    Get PDF
    Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human adipose tissue. Taken together, our data demonstrate that adipose Dnmt3a is a novel epigenetic mediator of insulin resistance in vitro and in vivo

    Phenotypic expression and outcomes in individuals with rare genetic variants of hypertrophic cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population. OBJECTIVES: The goal of this study was to compare lifetime outcomes and cardiovascular phenotypes according to the presence of rare variants in sarcomere-encoding genes among middle-aged adults. METHODS: This study analyzed whole exome sequencing and cardiac magnetic resonance imaging in UK Biobank participants stratified according to sarcomere-encoding variant status. RESULTS: The prevalence of rare variants (allele frequency <0.00004) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n = 5,712; 1 in 35), and the prevalence of variants pathogenic or likely pathogenic for HCM (SARC-HCM-P/LP) was 0.25% (n = 493; 1 in 407). SARC-HCM-P/LP variants were associated with an increased risk of death or major adverse cardiac events compared with controls (hazard ratio: 1.69; 95% confidence interval [CI]: 1.38-2.07; P < 0.001), mainly due to heart failure endpoints (hazard ratio: 4.23; 95% CI: 3.07-5.83; P < 0.001). In 21,322 participants with both cardiac magnetic resonance imaging and whole exome sequencing, SARC-HCM-P/LP variants were associated with an asymmetric increase in left ventricular maximum wall thickness (10.9 ± 2.7 mm vs 9.4 ± 1.6 mm; P < 0.001), but hypertrophy (≥13 mm) was only present in 18.4% (n = 9 of 49; 95% CI: 9%-32%). SARC-HCM-P/LP variants were still associated with heart failure after adjustment for wall thickness (hazard ratio: 6.74; 95% CI: 2.43-18.7; P < 0.001). CONCLUSIONS: In this population of middle-aged adults, SARC-HCM-P/LP variants have low aggregate penetrance for overt HCM but are associated with an increased risk of adverse cardiovascular outcomes and an attenuated cardiomyopathic phenotype. Although absolute event rates are low, identification of these variants may enhance risk stratification beyond familial disease

    Evaluating the impact of MEDLINE filters on evidence retrieval: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rather than searching the entire MEDLINE database, clinicians can perform searches on a filtered set of articles where relevant information is more likely to be found. Members of our team previously developed two types of MEDLINE filters. The 'methods' filters help identify clinical research of high methodological merit. The 'content' filters help identify articles in the discipline of renal medicine. We will now test the utility of these filters for physician MEDLINE searching.</p> <p>Hypothesis</p> <p>When a physician searches MEDLINE, we hypothesize the use of filters will increase the number of relevant articles retrieved (increase 'recall,' also called sensitivity) and decrease the number of non-relevant articles retrieved (increase 'precision,' also called positive predictive value), compared to the performance of a physician's search unaided by filters.</p> <p>Methods</p> <p>We will survey a random sample of 100 nephrologists in Canada to obtain the MEDLINE search that they would first perform themselves for a focused clinical question. Each question we provide to a nephrologist will be based on the topic of a recently published, well-conducted systematic review. We will examine the performance of a physician's unaided MEDLINE search. We will then apply a total of eight filter combinations to the search (filters used in isolation or in combination). We will calculate the recall and precision of each search. The filter combinations that most improve on unaided physician searches will be identified and characterized.</p> <p>Discussion</p> <p>If these filters improve search performance, physicians will be able to search MEDLINE for renal evidence more effectively, in less time, and with less frustration. Additionally, our methodology can be used as a proof of concept for the evaluation of search filters in other disciplines.</p

    Spatial Analyses of Benthic Habitats to Define Coral Reef Ecosystem Regions and Potential Biogeographic Boundaries along a Latitudinal Gradient

    Get PDF
    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar regional analyses elsewhere

    Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research

    Get PDF
    No abstract available

    Performance evaluation of onsite wastewater treatment : field sampling and preliminary evaluation of results

    No full text
    Background\ud The onsite treatment of sewage and effluent disposal within the premises is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the seemingly low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. Therefore it is important that careful consideration is given to the design and location of onsite sewage treatment systems. It requires an understanding of the factors that influence treatment performance.\ud \ud The use of subsurface effluent absorption systems is the most common form of effluent disposal for onsite sewage treatment and particularly for septic tanks. Additionally in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Therefore location specific factors will play a key role in this context.\ud \ud The project\ud The primary aims of the research project are:\ud • to relate treatment performance of onsite sewage treatment systems to soil conditions at site;\ud • to identify important areas where there is currently a lack of relevant research knowledge and is in need of further investigation.\ud \ud These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of the research project has been on septic tanks. Therefore by implication the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. In the evaluation to be undertaken, the treatment performance of soil absorption systems will be related to the physico-chemical characteristics of the soil. Five broad categories of soil types have been considered for this purpose. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each soil types.\ud \ud In the initial phase of the investigation, though the majority of the systems evaluated were septic tanks, a small number of aerobic wastewater treatment systems (AWTS) were also included. This was primarily to compare the effluent quality of systems employing different generic treatment processes.\ud \ud It is important to note that the number of different types of systems investigated was relatively small. As such this does not permit a statistical analysis to be undertaken of the results obtained. This is an important issue considering the large number of parameters that can influence treatment performance and their wide variability.\ud \ud The report\ud This report is the second in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The work undertaken included site investigation and testing of sewage effluent and soil samples taken at distances of 1 and 3 m from the effluent disposal area. The project component discussed in the current report formed the basis for the more detailed investigation undertaken subsequently. The outcomes from the initial studies have been discussed, which enabled the identification of factors to be investigated further. Primarily, this report contains the results of the field monitoring program, the initial analysis undertaken and preliminary conclusions.\ud \ud Field study and outcomes\ud Initially commencing with a list of 252 locations in 17 different suburbs, a total of 22 sites in 21 different locations were monitored. These sites were selected based on predetermined criteria. To obtain house owner agreement to participate in the monitoring study was not an easy task. Six of these sites had to be abandoned subsequently due to various reasons. The remaining sites included eight septic systems with subsurface effluent disposal and treating blackwater or combined black and greywater, two sites treating greywater only and six sites with AWTS. \ud \ud In addition to collecting effluent and soil samples from each site, a detailed field investigation including a series of house owner interviews were also undertaken. Significant observations were made during the field investigations. In addition to site specific observations, the general observations include the following:\ud • Most house owners are unaware of the need for regular maintenance. Sludge removal has not been undertaken in any of the septic tanks monitored. Even in the case of aerated wastewater treatment systems, the regular inspections by the supplier is confined only to the treatment system and does not include the effluent disposal system. This is not a satisfactory situation as the investigations revealed.\ud • In the case of separate greywater systems, only one site had a suitably functioning disposal arrangement. The general practice is to employ a garden hose to siphon the greywater for use in surface irrigation of the garden.\ud • In most sites, the soil profile showed significant lateral percolation of effluent. As such, the flow of effluent to surface water bodies is a distinct possibility.\ud • The need to investigate the subsurface condition to a depth greater than what is required for the standard percolation test was clearly evident. On occasion, seemingly permeable soil was found to have an underlying impermeable soil layer or vice versa.\ud \ud The important outcomes from the testing program include the following:\ud • Though effluent treatment is influenced by the physico-chemical characteristics of the soil, it was not possible to distinguish between the treatment performance of different soil types. This leads to the hypothesis that effluent renovation is significantly influenced by the combination of various physico-chemical parameters rather than single parameters. This would make the processes involved strongly site specific.\ud • Generally the improvement in effluent quality appears to take place only within the initial 1 m of travel and without any appreciable improvement thereafter. This relates only to the degree of improvement obtained and does not imply that this quality is satisfactory. This calls into question the value of adopting setback distances from sensitive water bodies.\ud • Use of AWTS for sewage treatment may provide effluent of higher quality suitable for surface disposal. However on the whole, after a 1-3 m of travel through the subsurface, it was not possible to distinguish any significant differences in quality between those originating from septic tanks and AWTS.\ud • In comparison with effluent quality from a conventional wastewater treatment plant, most systems were found to perform satisfactorily with regards to Total Nitrogen. The success rate was much lower in the case of faecal coliforms. However it is important to note that five of the systems exhibited problems with regards to effluent disposal, resulting in surface flow. This could lead to possible contamination of surface water courses.\ud • The ratio of TDS to EC is about 0.42 whilst the optimum recommended value for use of treated effluent for irrigation should be about 0.64. This would mean a higher salt content in the effluent than what is advisable for use in irrigation. A consequence of this would be the accumulation of salts to a concentration harmful to crops or the landscape unless adequate leaching is present. These relatively high EC values are present even in the case of AWTS where surface irrigation of effluent is being undertaken. However it is important to note that this is not an artefact of the treatment process but rather an indication of the quality of the wastewater generated in the household. This clearly indicates the need for further research to evaluate the suitability of various soil types for the surface irrigation of effluent where the TDS/EC ratio is less than 0.64.\ud • Effluent percolating through the subsurface absorption field may travel in the form of dilute pulses. As such the effluent will move through the soil profile forming fronts of elevated parameter levels.\ud • The downward flow of effluent and leaching of the soil profile is evident in the case of podsolic, lithosol and kransozem soils. Lateral flow of effluent is evident in the case of prairie soils. Gleyed podsolic soils indicate poor drainage and ponding of effluent.\ud \ud In the current phase of the research project, a number of chemical indicators such as EC, pH and chloride concentration were employed as indicators to investigate the extent of effluent flow and to understand how soil renovates effluent. The soil profile, especially texture, structure and moisture regime was examined more in an engineering sense to determine the effect of movement of water into and through the soil. \ud \ud However it is not only the physical characteristics, but the chemical characteristics of the soil also play a key role in the effluent renovation process. Therefore in order to understand the complex processes taking place in a subsurface effluent disposal area, it is important that the identified influential parameters are evaluated using soil chemical concepts. Consequently the primary focus of the next phase of the research project will be to identify linkages between various important parameters. The research thus envisaged will help to develop robust criteria for evaluating the performance of subsurface disposal systems
    corecore