13 research outputs found

    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing

    Get PDF
    International audienceCurrent sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    A schematic of the major lineages in the eukaryotic tree of life, showing the relationships between lineages for which genomic resources are currently available and those that have been targeted by the MMETSP.

    No full text
    <p>Lineages with complete genomes according to the GOLD database, as summarized in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Burki1" target="_blank">[3]</a>, are indicated by a solid line leading to that group, whereas lineages with no complete genome are represented by a dashed line. Lineages where at least one MMETSP transcriptome is complete or underway are indicated with a red dot by the name. Major lineages discussed in the text have been named and color-coded, but for clarity, some major lineages have not been labeled.</p

    Comparing the diversity of microbial eukaryotes at one marine site with that represented in genome data and the MMETSP project.

    No full text
    <p>(A) Taxon assignments for 930 Small Subunit (SSU) rRNA gene sequences from environmental clone libraries built using DNA from three size fractions in sunlit surface waters of the North Pacific Ocean. Four hundred and five sequences corresponding to Syndiniales (nonphotosynthetic members of the dinoflagellate lineage, often referred to as MALV1 and MALV2) were excluded for visualization purposes. Syndiniales are not represented in any complete genome data or the MMETSP, and the vast majority are only known as sequences from uncultivated taxa that often dominate clone libraries <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Massana1" target="_blank">[22]</a>,<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Massana2" target="_blank">[31]</a>. Filter size fractions were 0.1 to <0.8 µm, 0.8 to <3 µm, and 3 to <20 µm. This graph is only intended to give a snapshot of one marine sample; relative distributions vary based on distance from shore and depth, and several studies provide more detailed reviews of available SSU rRNA gene sequence surveys, see e.g., <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Amin1" target="_blank">[21]</a>,<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Not1" target="_blank">[32]</a>. (B) Taxonomic diversity of eukaryotes with complete genome sequences, as summarized in the Genomes Online Database (GOLD: <a href="http://genomesonline.org" target="_blank">http://genomesonline.org</a>). Note that multicellular organisms are included (unlike in A or C); animals, land plants, and multicellular rhodophytes are included in the opisthokont, viridiplantae, and rhodophyte categories, respectively. (C) Taxon breakdown of the MMETSP sequencing project, collapsed at the strain level (for some strains, cells were grown under multiple conditions and these have been counted only once). (D) Comparison of currently available complete genomes and MMETSP transcriptomes by Class for two diverse and well-studied groups of algae, prasinophytes <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Marin1" target="_blank">[14]</a> and dinoflagellates <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Fensome1" target="_blank">[15]</a>,<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001889#pbio.1001889-Saldarriagaa1" target="_blank">[16]</a>. For both lineages, genomes are broken down by Class on the left and MMETSP transcriptomes on the right.</p

    Periodical Articles on London History, 1990

    No full text

    The Changing Landscape for Stroke\ua0Prevention in AF

    No full text
    corecore