845 research outputs found

    Sub-Types and Therapeutic Management of the Cardiorenal Syndrome

    Get PDF

    Cardiac Resynchronization Therapy in the Cardiorenal Syndrome

    Get PDF
    The cardiorenal syndrome (CRS) is a complex clinical syndrome in which dysfunction of either the heart or the kidneys affects the functioning of the other organ system. Many therapies used in heart failure have further detrimental effects on renal function. Cardiac resynchronization therapy (CRT) is a relatively new form of device therapy that reduces morbidity and mortality in patients with heart failure. This review will discuss the effects of CRT on renal function in patients with CRS, the impact of baseline renal function on response to CRT, and potential risks associated with CRT in this unique population

    The Cool Accretion Disk in ESO 243-49 HLX-1: Further Evidence of an Intermediate Mass Black Hole

    Get PDF
    With an inferred bolometric luminosity exceeding 10^42 erg/s, HLX-1 in ESO 243-49 is the most luminous of ultraluminous X-ray sources and provides one of the strongest cases for the existence of intermediate mass black holes. We obtain good fits to disk-dominated observations of the source with BHSPEC, a fully relativistic black hole accretion disk spectral model. Due to degeneracies in the model arising from the lack of independent constraints on inclination and black hole spin, there is a factor of 100 uncertainty in the best-fit black hole mass M. Nevertheless, spectral fitting of XMM-Newton observations provides robust lower and upper limits with 3000 Msun < M < 3 x 10^5 Msun, at 90% confidence, placing HLX-1 firmly in the intermediate-mass regime. The lower bound on M is entirely determined by matching the shape and peak energy of the thermal component in the spectrum. This bound is consistent with (but independent of) arguments based solely on the Eddington limit. Joint spectral modelling of the XMM-Newton data with more luminous Swift and Chandra observations increases the lower bound to 6000 Msun, but this tighter constraint is not independent of the Eddington limit. The upper bound on M is sensitive to the maximum allowed inclination i, and is reduced to M < 10^5 Msun if we limit i < 75 deg.Comment: 10 pages, 7 figures, accepted for publication in Ap

    Identification of integrative and conjugative elements in pathogenic and commensal Neisseriaceae spp. via genomic distributions of DNA uptake sequence dialects

    Get PDF
    Mobile genetic elements (MGEs) are key factors responsible for dissemination of virulence determinants and antimicrobial-resistance genes amongst pathogenic bacteria. Conjugative MGEs are notable for their high gene loads donated per transfer event, broad host ranges and phylogenetic ubiquity amongst prokaryotes, with the subclass of chromosomally inserted integrative and conjugative elements (ICEs) being particularly abundant. The focus on a small number of model systems has biased the study of ICEs towards those conferring readily selectable phenotypes to host cells, whereas the identification and characterization of integrated cryptic elements remains challenging. Even though antimicrobial resistance and horizontally acquired virulence genes are major factors aggravating neisserial infection, conjugative MGEs of Neisseria gonorrhoeae and Neisseria meningitidis remain poorly characterized. Using a phenotype-independent approach based on atypical distributions of DNA uptake sequences (DUSs) in MGEs relative to the chromosomal background, we have identified two groups of chromosomally integrated conjugative elements in Neisseria: one found almost exclusively in pathogenic species possibly deriving from the genus Kingella, the other belonging to a group of Neisseria mucosa-like commensals. The former element appears to enable transfer of traditionally gonococcal-specific loci such as the virulence-associated toxin–antitoxin system fitAB to N. meningitidis chromosomes, whilst the circular form of the latter possesses a unique attachment site (attP) sequence seemingly adapted to exploit DUS motifs as chromosomal integration sites. In addition to validating the use of DUS distributions in Neisseriaceae MGE identification, the >170 identified ICE sequences provide a valuable resource for future studies of ICE evolution and host adaptation

    Scientific Rationale and Requirements for a Global Seismic Network on Mars

    Get PDF
    Following a brief overview of the mission concepts for a Mars Global Network Mission as of the time of the workshop, we present the principal scientific objectives to be achieved by a Mars seismic network. We review the lessons for extraterrestrial seismology gained from experience to date on the Moon and on Mars. An important unknown on Mars is the expected rate of seismicity, but theoretical expectations and extrapolation from lunar experience both support the view that seismicity rates, wave propagation characteristics, and signal-to-noise ratios are favorable to the collection of a scientifically rich dataset during the multiyear operation of a global seismic experiment. We discuss how particular types of seismic waves will provide the most useful information to address each of the scientific objectives, and this discussion provides the basis for a strategy for station siting. Finally, we define the necessary technical requirements for the seismic stations
    corecore