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A spatial examination of Solar PV Adopters in Northern Ireland and the impact of housing 
market and socio-economic characteristics.

Abstract

Purpose: An abundance of extant literature has examined the role of solar photovoltaic (PV) adoption 
and user costs, with an emerging corpus of literature investigating the role of the determinants of PV 
uptake, particularly in relation to the built environment and the spatial variation of PV dependency and 
dissimilarity. Despite this burgeoning literature, there remains limited insights from the U.K. 
perspective on housing market characteristics driving PV adoption and in relation spatial differences 
and heterogeneity that may exist. 
Study design: Applying micro-based data at the Super Output Area level geography, this study 
develops a series of OLS, spatial econometric models and a logistic regression analysis to examine built 
environment, housing tenure and deprivation attributes on PV adoption at the regional level in Northern 
Ireland, UK.
Findings: The findings emerging from the research reveal the presence of some spatial clustering and 
PV diffusion, in line with several existing studies. The findings demonstrate that an urban-rural 
dichotomy exists seemingly driven by social interaction and peer effects which has a profound impact 
on the likelihood of PV adoption. Further, the results exhibit tenure composition and ‘economic status’ 
to be significant and important determinants of PV diffusion and uptake.
Originality/value: Housing market characteristics such as tenure composition across local market 
structures remain under-researched in relation to renewable energy uptake and adoption. This study 
examines the role of housing market attributes relative to socio-economic standing for adopting 
renewable energy.

Key words: Solar PV installations, renewable energy, housing markets, tenure, socio-economic 
standing, energy policy.

1. Introduction

In response to mounting concerns pertaining to global warming and environmental degradation related 

to raising the standard of living for the world’s population, the UN General Assembly convened the 

World Commission on Environment and Development (WCED) in 1983 to propose long-term solutions 

for fostering sustainable development. The subsequent Brundtland Report (1987) introduced the 

concept of sustainable development which attempted to identify the interconnections between 

social equity, economic growth and environmental challenges. Implicit within the Bruntland reports 

definition of sustainable development was the concept of needs and the belief that technology and social 

organisation imposes limits on the ability of the environment to provide for the present and future needs. 

In response, the UN Programme of Action on Sustainable Development was established to carry out 

the directives and laid the foundations for the Rio Summit (1992), leading to the creation of the UN 

Commission on Sustainable Development (Hajian and Kashani., 2021). 

On the back of this, the introduction of the Kyoto Protocol in 1997, and more recently the Paris 

agreement (2016), has placed an emphasis on the reduction of energy consumption attributable to 

buildings, with the abatement of energy consumption within the built environment becoming a core 
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government policy to improve the environmental performance and carbon neutrality within housing 

stock (Fuerst et al., 2013).

In 2019 the United Kingdom government introduced The Climate Change Act 2008 (2050 Target 

Amendment) Order 2019 which set a target, known as “net-zero carbon”. This order outlined that the 

net UK carbon account for the year 2050 to be 100 per cent lower than the 1990 baseline, changing the 

Climate Change Acts initial 80% reduction goal. This ‘net zero carbon’ aim is also nestled within an 

international framework and aligns with the UN Sustainable Development Goals, two of which namely 

“Affordable and Clean Energy” and “Climate Action” are particularly germane to “net zero” initiatives. 

In addition to these National and International objectives, local administrations have devised interim 

action plans for this decade, outlining how progress towards net zero carbon will be achieved. In 

Northern Ireland for example, objectives have been set to “meet at least 70 percent of electricity 

consumption from a diverse mix of renewable sources” and to “develop proposals for a support scheme 

for renewable electricity to ensure that a diverse range of renewables can be brought forward, including 

those where we have already proven resources such as onshore wind and solar” (Northern Ireland 

Executive, 2022:7).

Accordingly, the UK has just under 28 years remaining to achieve its net-zero objective, which amounts 

to a very challenging 87 percent reduction in CO2 emissions compared to 2017 levels. In order to 

achieve this target, its attainment necessitates societal, behavioural and technological changes, in the 

ways and extent to which we generate and consume energy. The Committee for Climate Change (2019) 

report, that in part prompted the adoption of the Net Zero target, foresees the ‘extensive electrification’, 

particularly of transport and heating, supported by a major expansion of renewable and other low-

carbon power generation.

Therefore, tackling climate change via the decarbonization process will invariably necessitate the 

increasing use of renewable energy sources as a means of achieving these strategic objectives. A 

component of this is likely to be an extension of renewable energy production away from largely 

centralised fossil fuel based electricity generation and towards home energy production and 

consumption. Indeed, this is a core remit of the UK’s strategic energy objectives are ‘to ensure that the 

UK’s energy system is reliable and secure; deliver affordable energy for households and businesses; 

and  support clean growth and promote global action to tackle climate change’ (House of Commons, 

2020).

This clear policy context in relation to carbon abatement initially seemed promising and notably for the 

uptake of Solar Photovoltaic (PV) systems within the residential sector. As discussed by Chapman et 

al. (2016), in order to achieve desired installation targets, governments used a variety of stimulatory 

policies and tools including Feed-in Tariffs (FiT), point of sale rebates, including Renewable Energy 

Certificates (REC) or ROCs (Renewable Obligation Certificates), and tax benefits, all of which 
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addressed the ‘energy trilemma’ (WEC, 2013)  creating mitigation opportunities within energy security, 

climate change, and consumer affordability (Balta-Ozkan et al., 2021). 

Consequently, the deployment of solar PV in the UK context experienced rapid growth between 2012 

and 2017 due to these incentives such as ROC payments. However the financial incentives to promote 

the uptake of PV ceased in 2017 in Northern Ireland (2019 in the UK) and new installations within the 

residential sector have subsequently stalled. Currently, based on OFGEM data, 19,644 PV systems of 

6.5 Kw or less capacity giving an output of 79.6 MWh exist in Northern Ireland, equating to a modest 

2.5% of the housing stock having a PV system installed1. As contended by Fawcett and Boardman 

(2009), despite the sustained focus on enhancing construction and renewable technologies within the 

residential sector to reduce the carbon emissions for new housing stock, this does not impact upon the 

existing housing stock which represents approximately 90 percent of total market stock, and where 

renewable energy policy tackling efficiency is truly needed. Energy performance within the residential 

housing sector therefore remains a challenge within the UK, and particularly Northern Ireland. 

Indeed, existing research for Northern Ireland has shown that despite the decline in residential 

Greenhouse gas emissions since 1990, as a proportion of total greenhouse gas emissions, the residential 

sector has seen an increase in the percentage of the total greenhouse gases emitted (Greenhouse Gas 

Inventories, 2019)2. Further, existing research into measuring the level of the carbon emissions within 

the residential stock has also provided empirical evidence of the energy performance challenges. The 

study by Davis et al. (2017) into the assessment of the level of CO2 emissions of housing in NI, revealed 

that most benefits can be gained by improving performance of dwellings located in rural, as opposed to 

urban areas. More specifically, they identified that core urban areas appear to be the best or ‘greenest’ 

in terms of the level of carbon dioxide per kilogram per annum (CO2Kgm2p.a.), suggesting that the 

composition of the housing stock and more rurally based properties, on average, are the poorest in terms 

of their energy performance. Similarly, McCord et al. (2020) scrutinised the heterogeneity of building 

stock and typology models for measuring the impact of energy efficiency measures, finding terrace 

properties and apartments to obtain higher energy efficiency, with larger detached properties showing 

poorer energy performance. These differences and heterogenous effects continue to make the 

understanding of energy performance within residential dwellings complex and challenging. 

Whilst research has examined the nature of energy performance within the residential housing sector in 

relation to environmental and economic based sustainability and carbon abatement, there has been 

limited studies undertaken which examine whether the uptake and location of renewable energy sources 

and the diffusion, if any, are related to the socio-cultural environment, and if social interactions drive 

1 As per the Land Registry Pointer Database, based on 785,684 built dwellings in 2020
2 for England, Scotland, Wales and Northern Ireland.
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energy diffusion within a housing market context. As Balta-Ozkan et al. (2021) contend, insights into 

the determinants of PV adoption remain somewhat limited, and particularly in relation to the spatial 

regularities in PV adoption pattens. Notably, whilst the role and nature of ‘peer effects’ has been 

continuously investigated (Bollinger and Gillingham, 2012; Müller and Rode, 2013; Rode and Müller, 

2016; Graziano and Gillingham, 2015), to date there has been more limited insights as to the impact of 

housing based attributes – particularly tenure composition and whether there are rural and urban 

differences in terms of micro, meso and macro influences on the PV adoption. 

In view of this current hiatus in residential PV installations, this research seeks to quantify the extent of 

uptake of PV in Northern Ireland and in particular to assess the socio-economic and spatial 

characteristics of the households that have chosen to adopt PV. Existing research has tended to evaluate  

urban and rural development primarily through an economic lens (such as per capita income). However, 

issues surrounding the social dimensions of sustainability that are relevant to human development and 

human rights are significant for closely knit communities and their sustainable development. Therefore, 

we examine whether there are local drivers and patterns of PV adoption and if they are geographically 

related (Schaffer and Brun, 2015). Moreover, for policy and practice, the understanding of the spatial 

patterns and structure of  housing stock composition is important in terms of PV uptake as this provides 

local level empirical evidence for targeting and incentivisation of future PV adoption, and for achieving 

UN sustainability goals.

The paper is organized as follows; Section two offers a review of the relevant literature with the data 

and methodological considerations presented in Section three. The results and discussion of the key 

findings are offered in Section four with Section five discussing the conclusions and policy 

implications.

2. Literature 

Sustainability in the Built Environment

An extensive corpus of research has investigated the concept of sustainability, which, in the main, 

comprises a three-dimensional model of economic, environmental and social aspects. This model 

therefore describes sustainable development as a dynamic state of equilibrium attained by balancing 

these aspects to improve citizen life by enabling individuals to live in a healthy and safe environment 

(Oritz et al., 2009; Dempsey, Bramley, Power, & Brown, 2011). These aspects are clearly relevant to 

the built environment with environmental and economic issues largely dominating the debate on 

sustainability (Gibson, 2006; Park, Yoon, and Kim, 2017). Although the social dimension has received 

less attention, the emerging body of research indicates that the social aspect of sustainability is complex, 

particularly in the context of the urban form and residential development, with aspects such as social 
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equity, health and well-being, quality of life, cultural identity, social cohesion, decent housing, and local 

environmental quality and amenities perceived as key aspects to identify and prioritise the social aspects 

to be considered in the design of more sustainable residential buildings (Bramley, Power and Brown, 

2011; Ročak, Hospers and Reverda, 2016; Ardda et al., 2018).  In this context, a number of research 

studies have investigated social sustainability in the built environment, highlighting that the urban 

fabric, urban renewal and human need and behaviour are essential components for ensuring social 

sustainability, reducing environmental risk and improving well-being (Yıldız et al., 2020). 

Eizenberg and Jabareen (2017) suggest that classifications such as mixed land use, solar design, 

greening and renewal are critical to the sustainable urban form and can enhance the social dimensions 

of a healthy community. Likewise, Woodcraft et al. (2011) suggest that adaptability and resilience of 

planning regime, housing, infrastructure, public space and service provision are integral to social 

sustainability. Arguably then, for social sustainability and citizen satisfaction and participation, urban 

sustainability through the urban fabric and environmental conservation needs to be both maintained and 

improved. 

With regards to residential dwellings, research has considered social sustainability in the context of the 

urban built environment. Tapsuwan, et al. (2018) suggest that housing affordability, energy saving 

designs and neighbourhood safety are the most desirable features of the residential properties. Research 

has also noted that the urban landscape, green spaces and energy conservation are important for social 

sustainability since they create sustainable places that promote wellbeing to increase urban comfort 

(Dixon et al., 2019; Jennings, Larson and Yun, 2016). Others such as Li, Liu, Gibson, and Zhu, (2015) 

also contend that built environment related factors such as poverty, shortage of environmental 

resources, pollution and poor-quality housing are comorbid with poor health and well-being. 

Related to this is the climate change debate which has assumed greater significance. In this context, 

research highlights that the excessive consumption of natural resources can affect urban security, safety 

and the well-being of urban residents (Eizenberg and Jabareen, 2017). This notion is supported by Yıldız 

et al (2020) who found that the conservation of resources is important for environmental and economic 

sustainability but also critical for social sustainability. Similarly, Folke, Biggs, Norström, Reyers, and 

Rockström (2016) contend that communities depend on resources and services of the ecosphere, which 

in turn supports future generations through the provision of primary resources. This also indicates that 

access to resources is fundamental to social sustainability, underpinning the need to conserve such 

resources (Weingaertner and Åsa, 2014; Peterson, 2016). From this perspective, social sustainability 

can be viewed as a process for creating sustainable, successful places that promote wellbeing combining 

design of the physical realm with the design of the social world to support social and cultural life and 

space for people and places to evolve (Bacon and Caistor, 2014).
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Photovoltaic uptake and diffusion

The literature pertaining to PV deployment, uptake and adoption is pervasive and has a long established 

history, particularly from a (user)cost perspective, understanding consumer behaviour, and the barriers 

and motivations for PV adoption. Given the vast and expansive array of studies, we restrict the literature 

to concentrate on the ‘spatial distribution’ of PV adoption and associated neighbourhood and 

socioeconomic factors and determinants of PV uptake. 

International studies such as Walters, Kaminsky and Huepe (2018 ) for Santiago, Chile, have explored 

the factors influencing household solar adoption and illustrated that the diffusion of PV technology is 

influenced by complex technical, economic, and social factors. In the case of Colombo, Sri Lanka, 

Jayaweera et al. (2018) studying PV implementation employed a zero-inflated negative binomial 

regression model and compared the influencing factors of PV adoption. They uncovered that highly 

educated middle-aged persons and retirees were more likely to adopt PV, with early adopters of PV 

residing in larger, often detached housing of average, or above average, housing quality. Similarly, 

Opiyo (2015) scrutinised the impacts of socio-economic factors on temporal diffusions of PV systems 

using an agent-based model (ABM). Their findings, aside from the cost aspect, highlighted that social 

acceptance is important for PV diffusion, and that neighbourhood influences play a significant role in 

PV diffusion. 

In the US context, studies have also identified the role of socio-economic and built environment 

attributes in conjunction with peer effects. The study conducted by Bollinger and Gillingham (2012) 

highlighted the role of social interaction (peer effects) as an important factor in the diffusion of PV 

uptake in California. Empirically testing the diffusion of PV panels, they establish that a unitary 

installation of a PV system (at the zip-code level), increases the probability of PV adoption by 0.78 

percentage points. In a concomitant study for California, Davidson et al. (2014), augmenting address-

level PV adoption trends with geospatial information, established that the number of rooms, heating 

type and dwelling age were significant determinants of PV adoption – which the authors stipulate are 

consistent with the expected archetype of a PV adopter. Graziano and Gillingham (2015), also using 

PV installation data for Connecticut, empirically assessed the spatial patterns of PV diffusion. The 

authors found strong evidence of clustering of PV adoption which they herald does not ‘simply’ follow 

the spatial distribution of population or income. Indeed, their findings indicated that smaller or rural 

communities to adopt PV more so than larger urban areas which they described as a wave-like 

centrifugal fashion which diminished.

From a European perspective, a wealth of research has examined PV diffusion. In the case of Malta, 

Briguglio and Formosa (2015) assessed the determinants of household investment in PV panels. The 

authors established that the prevalence of younger households, higher incomes, dwelling ownership and 
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unshared roof space resulted in increased uptake, but notably that educational attainment was not a 

significant predictor. A number of studies have been conducted in the German context. Focusing on the 

spatial diffusion of PV systems and associated determinants, Baginski and Weber (2019) considering 

cross-regional spill-over effects using spatial lag (SLM) and error (SEM) models, indicated that spatial 

dependence is a relevant determinant for explaining regional clusters of PV adoption, which the authors 

infer may be explained by peer-effects due to ‘recurrent visual perception’. Nonetheless, they 

acknowledged that unobserved regional characteristics are at play and the share of detached houses, 

electricity demand and inverse population density of a region favour PV uptake. Müller and Rode 

(2013) applying geocoded data within a binary panel logit model, whilst controlling for spatial variation 

in population density and purchasing power, observed a significantly positive influence of previously 

installed systems located nearby on the decision to install a PV system. In an updated study, Rode and 

Müller (2016) also utilised granular geo-coordinated data and studied the Spatio-temporal variation of 

peer effects in PV adoption within a discrete choice approach. Their analysis revealed localised peer 

effects which they found to dissipate non-linearly with distance which decreased over time. In a similar 

vein, Rode and Weber (2016) tested whether localised imitation drives the Spatio-temporal diffusion of 

PV adoption using a unique dataset of 576,000 PV systems. Applying an epidemic diffusion model to 

control for temporal and spatial heterogeneity, they discovered that imitative adoption behaviour or peer 

effects is highly localised and an important factor for the diffusion of household PV systems. 

Two further studies also analysed geographical factors. Schaffer and Brun (2015) using 820,000 small-

scale PV installations registered between 1991 and 2012, revealed house density, homeownership, per-

capita income and neighbourhood effects to be significant determinants of PV adoption. Notably, they 

also observed a households’ ecological attitude has limited impact on their investment decisions. More 

recently, Müller and Trutnevyte (2020) using a dataset of 68,341 PV installations tested techno-

economic and socio-demographic variables within spatial frameworks, and also found household size, 

population density, and electricity prices to comprise positive effects. The authors also emphasised the 

importance of spatial spill-overs across adjacent districts.

In Sweden, Mundaca and Samahita (2020) investigating subsidy effects and non-economic variables 

affecting the likelihood to adopt PV, applied a web-based survey with homeowners. Employing logistic 

regression models, they recognised that subsidies and peer effects are significant factors driving the 

likelihood to adopt PV which they contend is due to environmental awareness, but noted that the 

visibility of technology and related pro-social behaviour were not significant. From a UK perspective, 

Allan and McIntyre (2017) conducted analysis into the spatial uptake of small-scale renewable 

technologies. Acknowledging that throughout the UK the spatial pattern of PV uptake has been uneven, 

driven by policy incentives and pointing towards the effects of local and neighbourhood socio-

economic factors, they found that wealth, housing type and population density are significant in 
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explaining uptake and that there are existing spatial (between neighbourhood) processes which explain 

the adoption of PV technology. Interestingly, they found that local green attitudes were not important. 

The role of the spatial variation and distribution of photovoltaic deployment in the UK and its 

determinants was undertaken by initial research undertaken Balta-Ozkan, Yildirim and Connor (2015b). 

Applying a spatial Durbin model using the cross-sectional data relating to the UK NUTS level 3 data, 

the authors established that regional spill-over effects are evident with PV uptake, driven by demand 

for electricity, population density, pollution levels, education level of households and housing types. 

Similarly, earlier research by Rae et al. (2009) noted that one-storey detached dwellings within the 

residential building stock offered the most potential for uptake of renewable electricity generation 

technologies in an urban setting. More recently, Balta-Ozkan et al. (2021) enhanced insights into PV 

adoption at the local level for the U.K. by incorporating the number of charities as a proxy to capture 

social interactions and peer effects. Applying a Geographically Weighted Regression (GWR) model to 

account for the spatially varying relationship between PV adoption and socio-economic explanatory 

variables, they revealed that charities and self-employment positively influence PV uptake whilst other 

socio-economic variables such as population density demonstrated bidirectional effects. 

The existing literature has established many social, economic, residential and environmental factors 

affecting PV adoption, and equally indicated that there exists geographic and temporal peer effects. The 

role of socio-economic and built environment attributes in conjunction with peer effects display some 

disparate findings – at the global level. Arguably, the nature of PV adoption varies by culture, solar 

irradiation and neighbourhood characteristics. Indeed studies have consistently shown there to be 

clustering effects evident for PV diffusion is not always tied to economic attributes and can be non-

linear across geography which may be explained by localised spatial neighbour peer-effects due to 

recurrent visual perception, social interaction and acceptance. This corresponds with the social 

dimension of sustainability within the built environment relating to harmony between the accessible 

technologies, procedures of development and  health and comfort, accessibility, inclusiveness, 

participation and education (Volenbroek, 2002; Wan and Ng, 2018), and the development of sustainable 

communities (Woodcraft et al., 2011). In light of these findings, this study proceeds to examine these 

determinants of PV adoption at the regional level in the UK, focusing on Northern Ireland. 

3. Data and Methodology

3.1 Data

The data was obtained from the Office of Gas and Electricity Markets (OFGEM), which contained 

anonymised details of 22,084 PV installations and system size only available at the Super Output Area 
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geography.3  Out of the 890 SOAs in Northern Ireland, all except four contained PV installations, with 

the average number of PV installations per SOA equating to 22 with the maximum number of PV 

installations in a single SOA totalling 173 (Table 1). The PV installations listed kW capacity per SOA 

ranged in size from 0 kW to 910kW, with an average capacity of 89.50kW (Figure 1). 

Table 1 Descriptive statistics of PV installations and kW capacity within SOAs

As observed in Figure 1, and concomitant with the wider UK study of Balta-Ozkan et al. (2021), there 

appears to be evidence of spatial concentration and correlation between the accumulated capacity and 

the number of installations indicating limited variance in the average number of panels per installation 

at SOA level. Initial relationship testing between the number and kW of PVs displays a correlation 

coefficient of .987 (p<.001) indicating this collinearity. 

Figure 1 Local distribution of PV installations and KW output at SOA level across NI

3.2 Model Development and Selection 

The literature illustrated that many aspects of social, economic, and environmental factors can impinge 

on PV adoption. Set against the theoretical backdrop of social sustainability and with regards to 

integrating renewable energy into residential dwellings, there have been however fewer studies which 

have examined whether key housing market determinants impact upon the adoption of renewable 

energy. In order to accurately measure the association between renewable energy PV uptake and its 

diffusion within the residential housing market, a number of housing market composition and 

characteristics are investigated. 

Previous research questioned the role of income on PV adoption and tended to present inconclusive 

results (Balta-Ozkan et al., 2015). Equally, the nature and role of employment and educational 

attainment has dominated the literature (Somerfield et al., 2017). Mountain and Kars (2018) found that 

PV uptake is proportionately more common in households in the middle and lower socio-economic 

deciles than in the higher socio-economic deciles with PV uptake proportionately the highest in the 

lowest socio-economic decile and lowest in the highest socioeconomic decile. In light of this, local 

variation of these factors is tested using the Multiple Deprivation Measure (MDM) produced by the 

Northern Ireland Statistics and Research Agency (NISRA) at the SOA statistical geographic level. This 

measure of deprivation provides a mechanism for ranking areas in the order of the most deprived to the 

least deprived and is characterised by Seven distinct domains4 of deprivation which are made up from 

3 Northern Ireland is split into 890 spatial areas known as Super Output Areas (SOAs), with an average population of around 
2,100 people (NISRA, 2017).
4 The Seven domains of deprivation are: Income Deprivation Domain; Employment Deprivation Domain; Health Deprivation 
& Disability Domain; Education, Skills & Training Deprivation Domain; Access to Services Domain; Living Environment 
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one or more indicators. Thus, MDMs are incorporated to assess the location of PV installations against 

the constituent domains of MDM (Figure 2). 

The average house price per SOA is also included within the analysis in order to establish if there is 

any linkages between PV adoption and a house price premium. As Mountain and Kars (2018) indicate, 

PV is proportionately more popular with people who live in less valuable houses than it is with people 

who live in more valuable houses. Similarly, Lan, Gou and Yang (2020) and Hoen et al. (2013) 

established that houses with PV exhibit a premium in terms of property value, inferring that higher solar 

rebates and subsidy leads to a higher premium and encourages PV adoption. To investigate whether 

there is a spatial effect, data was obtained from the Ulster University Quarterly House Price Index5, 

with the data joined at SOA level to produce average price statistics6. 

The role of urban structure is important for understanding the social dimension of sustainability and 

particularly whether housing market homogeneity (clustering), and indeed, heterogeneity (randomness) 

are factors impacting upon the spatial distribution and diffusion of PV adoption. Further, the differences 

in rurality we conjecture may be borne out of the level of social interactions, community cohesion and 

decision making. Therefore, urban-rural classification was also incorporated in order to establish 

whether PV installations have been driven, or are differentiated by, an urban-rural dichotomy (Figure 

2). We therefore test whether SOA classification comprises an effect on PV installation and uptake. 

This was achieved by layering the PV data against the Settlement Development Limits data available 

from the NISRA. As the settlement development limits and SOA boundaries are not co-terminus, the 

PV data was converted to centroids (as opposed to polygons) to facilitate the best fit between the 

datasets. Given that a number of SOA boundaries stray over the settlement development limits, NISRA 

has introduced an intermediate category of  “Mixed’ alongside ‘urban’ and ‘rural” to categorise the 

SOAs (Figure 2). Descriptive analysis indicates that 8.2% of SOA classification is ‘mixed’, with 61.8% 

urban and 30.0% classified as rural. 

Figure 2 The Classification and spatial distribution of SOAs and MDM

Finally, tenure and homeownership rates remains an under-researched area within PV adoption. As 

intimated in the research of Davidson et al. (2014), it remains unclear whether home-ownership has an 

influential effect – particularly within the U.K. context. Though it is notable in other studies such as 

Domain; Crime & Disorder Domain. The ranks of the 7 domains are weighted and combined, to provide a ranking of multiple 
deprivation (MDM) for the 890 SOAs (NISRA, 2017:2).
5 The UU HPI was established in 1984 and records circa 40% of residential property transactions across the region of NI. 
The HPI measures the current price and quantities in relation to the base period. The index is based on quarterly returns 
obtained from 103 contributory estate agency practices from across Northern Ireland and supplemented with recorded and 
verified sale transactions from Propertynews.com. The sales information is also cross-correlated with the domestic capital 
valuation register for inspection and verification of attribute information..
6 The data was extracted over a three year time series (2017-2020) and a time-adjustment sales price (TASP) approach 
undertaken to provide a ‘one point’ in time price statistic for comparability with the PV installation data.
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Briguglio and Formosa (2017) found that home-owners may be more likely to install PVs as they are 

fixed capital investments. Therefore, to further investigate this dynamic we include data on the type of 

tenure, namely the percentage of Owner-Occupied, Social- and Private-Rented housing rates by SOA 

obtained from NISRA and layer this with the PV SOA dataset. The data shows that across the SOAs, 

the average SOA comprises 68.15% of owner-occupiers, 14.65% social renters and 17.2% private 

renters. The full list of explanatory variables included within the analysis is summarized in Table 2 

below.

Table 2 Explanatory variables descriptions and data sources

The PV Super Output Area dataset was subsequently imported into the GIS software (QGIS, ArcMap 

10.4 and ArcView 3.3)7 and a series of spatial joins were undertaken to encompass wider built 

environment and socio-economic datasets with the PV data. Akin to other studies controlling for 

density, this study applies the ratio of housing density per hectare in order to control for differences in 

SOA size and the total number of residential households contained within each SOA as a proxy to 

measure the effect of sparseness of PV adoption. 

3.2.1 Spearman's rho and Principal Component Analysis

Spatial and neighbourhood characteristics provide information which can enable the examination and 

representation of composite inter-relationships. Whilst important, the spatial interactions and 

relationships between variables often display multicollinearity and autocorrelation making multivariate 

analysis challenging. Consequently, we test the association between the variables and undertake an 

optimisation process. Initial examination of the relationships between the various domains of 

deprivation displayed elevated levels of correlation and thus multicollinearity (Table 3). 

Table 3 Spearman’s (rho) correlation coefficients between deprivation domains

In light of this, Principal Component Analysis (PCA) is undertaken for reducing the dimensionality of 

the MDM domain attributes, address multi-collinearity whilst mitigating against potential omitted 

variables bias and retaining the underlying nature of the dataset to account for the linear combination 

of the original variables. This spectral decomposition approach calculates eigenvalues which is the 

factorisation of a matrix into a canonical state thereby decomposing the original dataset into a set of 

linear variates (Field, 2013). The resulting components explain all the variance held within the 

correlation matrix (Kline, 1994), and maximises the variance (sum of the squared loadings) explained 

for any number of factors and detects a structure in the relationships between the variablesi. 

7 Three different programs were used as they comprise a different range of functions required for further modelling purposes. 
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To identify the number of components to be retained, the analysis applies a prior criteria to select the 

number of components that explain the maximum amount of variance. The eigenvalue criteria of >.9 

along with the Scree test and the interpretability of each component is applied. Criteria are that each 

principal component explains at least 5 per cent of the variance and, cumulatively, 75 per cent of 

variance. Variables with absolute scoring coefficients >0.5 were considered important contributors to a 

pattern and appropriate for interpretative purposes (Field, 2013). 

3.2.2 Principal Component Analysis extraction

The Principal component extraction initially examined the Kaiser-Meyer-Olkin Measure of Sampling 

Adequacy and Bartlett’s test of Sphericity for ensuring that the data was appropriate for further analysis.  

The KMO value of .786 and Bartlett’s test of Sphericity significant ( ; 5778.26, df.21, p<.001) indicate 𝜒2

that PCA is appropriate for the data8. The extraction of the principal components reveals three 

components to display latent roots (eigenvalues) of >.9, with the proportion of variance explaining 

89.9% (Table 4). Scrutiny of the Scree plot further indicates that three components should be retained. 

The first component displays an eigenvalue of 3.54 and explains 50.5% of the variance, with the second 

component explaining 24.4% of variance and the third component explaining 15.0% of the variance.

Table 4 Extraction variance

The rotation of the component structures applying the orthogonal (varimax) solution can be observed 

in both Table 5 and Figure 3 which also presents the correlation biplots between each of the factors 

(components).  

Figure 3: Correlation Biplots for extracted factors

  
The findings (Table 5) show Employment, Education, Income and Crime load onto the first component 

representing 50.54% of the underpinning variance. The first component can therefore be regarded as 

‘Economic’. Component two explains 24.39% of the variance and encompasses both the Access to 

Services (-.945) and the Crime and Disorder domain (.645) and is termed ‘Social’. The third component 

represents 14.99% of the explained variance and shows both Health (.887) and Living Environment 

(.979) as rotated loadings, which is referred to as ‘Environment’.

Table 5 Rotated loadings of the principal components      

8 The anti-image matrix further revealed that the diagonal elements are all above the minimum threshold of 0.5, with the off-
diagonal values also revealing that the partial correlations are relatively small, therefore confirming the KMO statistic. The 
results indicate that the R-matrix is not an identity matrix – rejecting the null hypothesis (Kaiser, 1974). 

Page 12 of 40Journal of Financial Management of Property and Construction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal of Financial M
anagem

ent of Property and Construction

The spatial representation of the three rotated components can be observed in Figure 4 which accounts 

for the underpinning dimensionality of the various domains of MDM. Overall, the components display 

some evidence of spatial concentration and clusters within the ‘Economic’ and ‘Social’ domains, 

however show more spatial dissimilarity or randomness within the ‘Environment’ domain.

Figure 4 Spatial representation of the extracted and retained Principal Components

3.2.3 Multi-Model interface testing and optimisation

To avoid overtly complicated models and the loss of information pertaining to determination of key 

relationships, alternative approaches to data analysis have emerged to approximate the likelihood of 

data and select the optimal model structure. This approach is envisaged to safeguard model parsimony 

without reducing predictability and overcomplexity based on minimising the Akaike Information 

Criteria(c)ii, which ensures retention of the highest level of explanation as depicted by the Adjusted R2, 

and remove unwanted influential variables and multicollinearity9. Within this research, this model 

interface process is based on 9 variables and a total of 511 OLS models assessed filtered by the AICc. 

The optimal (and parsimonious) model structure excluded the average House Price parameter (Table 

6)10.

Table 6 OLS Model Selection procedure sorted by AICc

In light of the model optimisation procedure, the final “base” model specification takes the form11:

𝑛𝑃𝑉𝑖
=  𝛽0 + 𝛽1𝑀𝑖𝑥𝑒𝑑𝑖 +  𝛽2𝑈𝑟𝑏𝑎𝑛𝑖 +  𝛽3𝑆𝑜𝑐𝑖𝑎𝑙𝑅𝑒𝑛𝑡𝑖 + 𝛽4𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑅𝑒𝑛𝑡𝑖 +  𝛽5𝐻𝑜𝑢𝑠𝑒/𝐻𝑎𝑖 + 𝜆1

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑖 +  𝜆2𝑆𝑜𝑐𝑖𝑎𝑙𝑖 +  𝜆3𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑖 + 𝛽6𝑥𝑐𝑜𝑟𝑖 + 𝛽7𝑦𝑐𝑜𝑟𝑖 + 𝜇𝑖

where i denotes regions (SOAs) and  is an independently and identically distributed error term with 𝜇𝑖
zero mean and variance σ2. Both the xcor and ycor reflect various tested polynomial expansions or 
spatial dummy variables incorporated to control for space across the modelling frameworks. 

3.3 Spatial Structural Analysis and Moran’s I

The first step in all spatial analysis, as in any other statistical procedure, is to undertake exploratory data 

analysis (EDA) to uncover (usually) hidden patterns in datasets in order to quantify relationships 

9 This procedure estimates the relative quality of the models for the given set of data, relative to each of the other models 
premised on the relative information lost by a given model: the less information a model loses, the higher the quality of that 
model. This therefore estimates the trade-off between the ‘goodness of fit’ of the model and the simplicity of the model.
10 The relative importance of each parameter also available upon request. 
11 Note: the ‘hold-out’ model is a rurally located SOA of owner-occupation status.
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between variables (values) and further examining these across spatial units [31]12. In order to test the 

spatial structure of the data, geographic distances are determined using a symmetric distance matrix 

(Upper right distance matrix)13. The Moran's I coefficient is the most commonly used statistic for 

autocorrelation (AC) analyses in spatial studies (Stevens, 2002) as it evaluates whether the pattern 

expressed is clustered, dispersed, or random14. For this analysis, the Moran’s I for the PVs reveals the 

initial (first) distance class (immediate short distance) to exhibit a positive and statistically significant 

p-value (0.398, p<.001) - demonstrating the maximum value of Moran’s I with this connectivity 

structure (Table 7)15. This decreases to 0.226 (p<.001) and .066 (p<.001) and .014 (p<.05) by the fourth 

distance class within the connectivity structure – and remains relatively negligible over the remainder 

of the spatial geography. This indicates some evidence of spatial clustering of high (low) values but 

also spatial dispersion which is often reflective of competitive process - a feature with a high value 

repels other features with high values; similarly, a feature with a low value repels other features with 

low values. The analysis also indicates that the spatial distribution of PVs may be the result of random 

spatial processes or complete spatial randomness (CSR). 

Table 7 Moran’s I values across the distance classes

In addition, we examine the Local Indicator of Spatial Autocorrelation (L.I.S.A)16 to measure the 

contribution of each sampling unit to the overall (global) level of spatial autocorrelation, which is tested 

for statistical significance (of Moran's I) using randomization undertaken via Monte Carlo simulation 

to analyse the regression residuals17 (Rossi et al., 1992). The L.I.S.A results for PVs (Figure 5) reveal 

that the spatial distribution of the local autocorrelation structure to appear heterogenous across the 

market geography with clustering evident across the region, particularly in urban areas. 

Figure 5 L.I.S.A spatial structure (PV installations)

This can also be observed in the Moran’s Scatterplot and normalised Z-score scatterplots as presented 

in Figure 6. The scatterplots, generated for each distance class18, exhibit correlations ranging between 

49.5% which reduce to 12.2% between the variables values and those of the neighbouring cells (average 

neighbour values) showing limited violation of homogeneity which reduces across space. 

Figure 6 L.I.S.A Scatterplots for PV across avg. nearest neighbour classifications

12 see Rossi et al. (1992) for a discussion of EDA within the framework of spatial analysis.
13 based on a default number and equal distance classes with significance tested using 199 permutations There are 18 Distance 
classes. These are not presented due to space limitations. All Distance classes are available upon request.
14 This calculates the Moran's I Index value and both a z-score and p-value to evaluate the significance of that Index. p-values 
are numerical approximations of the area under the curve for a known distribution, limited by the test statistic.
15 Visual representation of Moran’s I for each variable over the distance units are available in the Appendices
16 The local Moran’s I can be interpreted as a leverage statistic showing the importance of each cell to the analysis of the 
overall pattern. See Anselin (1995).
17 Monte Carlo method is selected and we employ 199 permutations (randomisations).
18 Only six distance class units are presented due to space limitations. There are 162 L.IS.A. maps and Scatterplots in total 
(available upon request for all variables).
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3.4 Spatial Modelling approaches

Studies examining energy transitions, peer effects and PV installations have tended to try and account 

for spatial dependence and heterogeneity (Bollinger and Gillingham, 2012; Graziano and Gillingham, 

2015). This approach, by undertaking various approaches and incorporating geographic information 

systems (GIS) to facilitate spatially-adjusted model structures, incorporates weights or distance based 

matrices to examine (auto)correlation between geographical proximity and similarity (Tiefelsdorf, 

2006). In a similar vein, this paper employs an OLS based model (incorporating spatially delineated 

coordinates) along with a Poisson specification, an Eigenvector Spatial Filter  (ESF) model and a variety 

of geo-statistically based models including two Spatial Lagged Models (SLMs) and Geographically 

Weighted Regression (GWR) to examine the role of the selected parameters on PV installations 

(uptake). The OLS models are used to serve as a base model to analyse the role of socio-economic and 

housing tenure attributes on PV installation uptake. 

3.4.1 OLS and Poisson Models

The standard OLS fixed effects linear model takes the form:

𝑛𝑃𝑉𝑖
=  𝛽0 + 𝛽1𝑀𝑖𝑥𝑒𝑑𝑖 +  𝛽2𝑈𝑟𝑏𝑎𝑛𝑖 +  𝛽3𝑆𝑜𝑐𝑖𝑎𝑙𝑅𝑒𝑛𝑡𝑖 + 𝛽4𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑅𝑒𝑛𝑡𝑖 +  𝛽5𝐻𝑜𝑢𝑠𝑒/𝐻𝑎𝑖 + 𝜆1

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑖 +  𝜆2𝑆𝑜𝑐𝑖𝑎𝑙𝑖 +  𝜆3𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑖 + 𝛽6𝑥𝑐𝑜𝑟𝑖 + 𝛽7𝑦𝑐𝑜𝑟𝑖 + 𝜇𝑖

where; - is the Constant;  are the coefficients;  are the orthogonal components and  is β0 β1…βn  λ1..λn 𝑢
the Error term. 

We also test the model specification based on a Poisson regression approach. We apply this form of 

multiple regression (generalised linear model) due to the PV installations acting as the dependent 

variable may be regarded as having a Poisson distribution where the mean is logarithmically linked to 

a linear combination of explanatory variables and due to PV installations being based on count data (i.e. 

they can only be an integer and cannot be negative). As discerned by Flowerdew and Amrhein (1989), 

when counts are large, it is acknowledged that the normal distribution (OLS model) can provide a 

reasonable approximation to the ‘true’ discrete distribution, however when they have small values this 

can impact on the reliability of OLS results. Thus, the Poisson regression approach is akin to fitting an 

unconstrained spatial interaction model and applies a deviance statistic based on the log likelihood as 

the measure of goodness of fit – the measure of the overall difference between observed and estimated 

values. In line with the error sum of squares in OLS regression, the Poisson regression takes the form:

𝑑 = 2 
𝑁

∑
𝑖 = 1

𝑦𝑖 𝐼𝑛 (𝑦𝑖 𝑦𝑖)
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where d is the deviance,  is one of the n observed values, and  is the equivalent estimated value. The 𝑦𝑖 𝑦𝑖
deviance statistic displays a distribution approximating chi-square with degrees of freedom equal to n  
minus the number of parameters fitted19.

3.4.2 Eigenvector Spatial Filter (ESF) model

The Eigenvector Spatial Filter (ESF) method applies geographical coordinates which are subject 

to an eigen analyses of geographical distances to establish a set of spatial filters (eigenvectors) 

expressing the spatial structure of the region (Griffith, 2003). Thus, this approach uses a 

decomposition approach for alleviating heterogeneity through the extraction of orthogonal 

components using the spatial dependence diagnostic Moran’s coefficient formulated as follows:

𝑀𝐶 =  
𝑁

1′𝐶1
𝑦′𝑀𝐶𝑀𝑦

𝑦′𝑀𝑦

where 1 is an N × 1 vector of ones, y is an N × 1 vector of variable values, C is an N ×N connectivity 
matrix whose diagonal elements are zero, and M = IN –11'/N is an N × N matrix for double centring, 
where IN is an N × N identity matrix. Notably, M is replaced with MX = IN–X(X' X)-1X' if y is a 
residual vector of a linear regression model.  MC is positive if the sample values in y display positive 
spatial dependence, and negative if they display negative spatial dependence. The l-th eigenvector of 
MCM, el, describes the l-th map pattern explained by MC, while the set of eigenvectors of MCM, Efull 
={e1, ..., eN}, provides all the possible distinct map pattern descriptions of latent spatial dependence, 
with each magnitude being indexed by its corresponding eigenvalue (Griffith, 2010).

Griffith (2010) further extended the basic linear model as rather than using the final EVs to correct for 

SAC on a global level, interaction terms were introduced between the selected eigenvectors and the 

predictors to model spatially varying coefficients in the following manner:

𝑌 ≈ (𝛽01 +
𝐾0

∑
𝐾 = 1

𝐸𝑘0𝛽𝑘0) +  
𝑃

∑
𝑃 = 1

(𝛽𝑝𝟏 +
𝐾𝑝

∑
𝐾𝑝 = 1

𝐸𝐾𝑝𝛽𝑘𝑝) ∙ 𝑋𝑝 +  𝜀

where  is the n×1 vector of prices,  is a n×1 vector of independent variable p (p=1,2,3, …,P),  𝑌 𝑋𝑝 𝐸𝐾𝑝
is the EV (k=1,2,3, …,K) that describes the variable p, , ,  are estimated regression 𝐾𝑝 𝛽0 𝛽𝑘0 𝛽𝑘𝑝
coefficients, and ε is an independent and identically distributed error term. 

Note that the element-wise matrix multiplication and the interaction terms are given by  . The 𝛽𝑘𝑝 ∙ 𝑋𝑝

parameters are estimated by means of OLS. The first part of the equation represents the spatially varying 

intercept, and the second part represents the spatially varying coefficients. After rearranging, the 

regression coefficients constitute the global impact, while the individual EVs mimic local modifiers of 

these global effects across space:

𝑌 =  𝛽01 +
𝑃

∑
𝑝 = 1

𝑋𝑃 ∙ 1𝛽𝑃 +  
𝐾

∑
𝐾 = 1

𝐸𝑘𝛽𝐸𝑘 +
𝑃

∑
𝑝 = 1

𝐾

∑
𝑘 = 1

𝑋𝑃 ∙  𝐸𝑘𝛽𝑝𝐸𝑘 +  𝜀

19See Wang & Famoye (1997) and Flowerdew & Amrhein (1989) for a full methodological discussion on generalised Poisson 
model specification.
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The Eigenvectors are created using geographical coordinates which were initially truncated applying a 

maximum distance connectivity estimation where all the sampling units under a minimum spanning 

tree criterion20. The filter selection were based on PV installations as the response variable and by 

minimising residual Moran’s I, with the threshold set at p<.05. Overall, the filter selection resulted in 

the determination of 246 eigenvector ‘filters’. A filter extraction method was subsequently applied using 

the AICc with each filter included where it reduced the AICc statistic. This culminated in retention of 

21 spatial filters to be used within the OLS regression analysis (Figure 7). 

Figure 7 Extracted Spatial Filters21

 

3.4.3 Spatial Lag models

When it is suspected that Tobler’s (1970) law of geography applies22, and as demonstrated through 

short-scale distance classes in the L.I.S.A analysis, spatial dependence models may be necessary to 

correct for this effect - and other spatial attributes not captured within the model structure. Such indirect 

impacts are in addition to the direct effects associated with the standard explanatory variables that 

capture the structural features of the social and natural environment (Kim et al., 2003). The spatially 

lagged response model is expressed as: 

𝑦 =  𝜌𝑊𝑦 + 𝑋𝛽 + 𝑢

where y is a n × 1 vector of observations on the dependent variable, X is a n × k matrix of observations 
on explanatory variables, W is a n × n spatial weights matrix, u an n×1 vector of i.i.d. error terms, ρ the 
spatial autoregressive coefficient, and β a k×1 vector of regression coefficients. 

An alternative interpretation is to examine a lagged predictor model which extends the response model 

to include a weight matrix of the predictors which can be expressed as:

𝑦 =  𝜌𝑊𝑦 + 𝑋𝛽 + 𝑊𝑋𝑦 + 𝑢

Initial modelling examined a set of spatial weights matrices (   and ) in order  Wi, j = 1/𝑑𝑖,𝑗   Wi, j = 1/𝑑2
𝑖,𝑗

to obtain the best ‘goodness of fit’. The spatial weights approach  produced the best   Wi, j = 1/𝑒𝑑𝑖,𝑗

‘goodness of fit’ which applies the average of spatial lagged PV information of other SOAs, thereby 

accounting for spatial dependencies in the residuals23. 

20 For this study, the truncation distance connecting all sampling observations displayed a distance class upper bound of 
11739.539. In total, 19 distance classes were determined.
21 A selected number of Spatial Filters are displayed due to space limitations. The full list of the extracted 21 Filters are 
available upon request.
22The first law of geography is that ‘everything is related to everything else, but near things are more related than distant 
things’ (Tobler, 1970:236).
23 SL residuals should not be distinguishable from random noise.
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3.4.4 Geographically Weighted Regression Model

Geographically Weighted Regression is a non-parametric approach applied to mitigate the issue of 

spatial heterogeneity and autocorrelation as it permits coefficients to vary continuously. GWR as 

outlined by Fotheringham et al. (2003) is as follows:

yi = β0(xi,yi) + ∑ βk (xi,yi)xik + εi  

where: yi = ith PV SOA; β0 = model intercept; βk = kth coefficient; xik = kth variable for the ith PV 
SOA; εi = error term of the ith PV SOA; (xi, yi) = x,y coordinates of the ith regression point 

GWR measures the relationships around each regression point i, where each set of regression 

coefficients is estimated by weighted least squares using kernel densities. In this study, an nXn spatial 

weights matrix is constructed to indicate the weight applied to each observation (SOA), assigned 

relative to the subject based on geographic distance:

wij = exp[-dij/b2]

where:  wij = weight applied to the jth SOA at regression point i; dij = geographical distance in kilometres 
between regression point i and SOA j ; b = geographical bandwidth.

The bandwidth in GWR specifies the radius of the weighting function which is either fixed, based on 

absolute distance, or adaptive - fluctuating, based on a predetermined number of nearest neighbours. 

An optimum bandwidth can be found by minimising the model goodness-of-fit. This study applies the 

Golden Section Search, and Akaike Information Criterion (AICc), searching from 26084.26 to 39126.39 

distance units. The analysis examined various spatial weighting functions (Bi-Square; Moving Window; 

Adaptive Spatial Kernel for minimising nearest neighbours using AIC optimisation) and applies a Bi-

square function.

3.4.5 Logistic Regression

To further examine whether an urban-rural difference is evident, we create a dichotomous dependent 

variable to assess predictions based on likelihood of urban and rural.  When categorical, the assumption 

on linearity is violated and logistic regression can be used to transform the linear model in logarithmic 

terms (logit) permitting the prediction of categorical outcomes based on the probability of occurrence. 

Instead of predicting the value of Y from a predictor variable(s)  we examine the dichotomous 𝑋(𝑛)

prediction of probability of Y occurring (P)Y from known values (e = natural logarithms) resulting in 

probability of Y occurring equating to the case belonging to a particular category culminating in a binary 

estimation (0; 1). 

P(Y) =   or P(Y) = 
1

1 + 𝑒
―(𝑏0 + 𝑏1𝑋1𝑖) 

1

1 + 𝑒
―(𝑏0 + 𝑏1𝑋1𝑖 + 𝑏2𝑋2𝑖…𝑏𝑛𝑋𝑛𝑖) 
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A value close to 0 suggests that Y is very unlikely to have occurred, with a value close to 1 implying 

that Y is very likely to have occurred employing a maximum-likelihood estimation procedure which 

selects the coefficients (β) that make the observed values most likely to have occurred. Assessing the 

model, the log-likelihood, is based on summation of the probabilities associated with the predicted, P(𝑌𝑖

 and actual , outcomes – similar to residual sum of squares (RSS): ) 𝑌𝑖

𝑁

∑
𝑖 = 1

[𝑌𝑖𝐼𝑛(𝑃(𝑌𝑖)) + (1 ― 𝑌𝑖)𝐼𝑛 (1 ― 𝑃(𝑌𝑖))]

The model is assessed using the likelihood ratio, illustrating that a negative coefficient value implies 

that as a predictor value increases, the likelihood of the outcome decreases, with a positive value 

indicating that as the predictor variable increases, so does the likelihood of the event occurringiii. 

4. Results and discussion

4.1 Ordinary Least Squares and Poisson regression models

The Global OLS and Poisson model findings are presented in Table 8, with the Adjusted and pseudo R2 

denoting the coefficient of determination, the AIC and the Variance Inflation Factor (VIF) index. The 

results show the variance inflation to be low and that no undue influence is being exerted within the 

regression parameters. The OLS model displays a 47.7% level of explanation with the Poisson model 

showing a slightly better level of explanation of 50.8%. The global Moran’s I alongside the L.I.S.A. 

scatter plots demonstrated the presence of some spatial correlation at initial short-distances, thereby 

indicating that caution should be treated when applying the OLS model for identifying the relationships 

between solar PV uptake and the explanatory variables. The results of both model coefficients do 

however show Urban SOAs to comprise a negative effect (-7.716, p<.001; -0.213, p<.001), indicating 

that more urban based SOAs demonstrate lower PV adoption and uptake. In terms of tenure, both 

models show the percentage of social rented housing to be statistically insignificant, albeit, the OLS 

reveals a negative effect whereas the Poisson model displays a negligible but positive effect. The 

findings do however show the percentage of the private rental housing to constitute a negative impact 

on PV adoption (0.194, p<.001; -0.015, p<.001). In terms of density, as depicted by the number of 

houses per hectare, this reveals a negative influence on the number of PV installations, similar to Balta-

Ozkan et al. (2021), suggesting that residents located in less densely populated areas are more likely to 

install a PV system.

Turning to the role of deprivation, the coefficient ‘Economic status’ (1.464, p<.05; 0.05, p<.001) 

displays a positive effect suggesting that the underpinning dimensions of income, employment and 
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education comprise a positive impact on PV adoption. Conversely, the level of social cohesion, as 

depicted by the latent dimensions of access to services and crime and disorder, exhibits a negative effect 

(-6.247, p<.001; -0.246, p<.001) on PV uptake, in conjunction with Wellbeing (health and living 

environment deprivation) which is also negative (-3.122, p<.001; -0.079, p<.001) for both models. 

Table 8 OLS and Poisson model results

4.2 Eigenvector Spatial Filter findings

Examination of the ESF model (Table 9) shows a 52.4% level of explanation in the variation of PV 

adoption, with an AIC statistic of 7214.52, outperforming the standard OLS and SLMs. Interestingly, 

the partial regression analysis reveals the predictors to explain 46.3%, with the filters explaining 33.5% 

and the shared explained variance to account for 27.3%. The model coefficients, controlling for spatial 

variation, indicate that Urban-based SOAs comprise a statistically significant negative effect (-7.376, 

p<.001), with ‘Mixed’ urban-rural SOAs also negative (-1.099, p>.05) although this is not statistically 

significant. Again, this finding illustrates that urban SOAs tend to have less PV adoption than rural-

based SOAs. Both the percentage of social and private rental housing within each SOA demonstrate 

negative coefficients (-0.055, p>.05; -0.179, p<.001), however the social housing coefficient is not 

statistically significant. Conversely, the private rental coefficient is statistically significant as is much 

more pronounced in terms of magnitude inferring that the percentage of rental stock within an SOA, 

particularly private rentals decreases the likelihood of PV installation/adoption. Turning to the 

Economic status coefficient, this reveals a positive effect on PV uptake symbolising that increased PV 

adoption is related to the overall income, education and  employment levels within a particular SOA. 

In contrast, both the Social capital (-6.523, p<.001) and wellbeing (-4.104) coefficients demonstrate 

negative effects indicating that the wider living environment, health and crime impact upon the level of 

PV uptake. 

Table 9 Eigenvector Spatial Filter model coefficients

4.3 Spatial Lag and Geographically Weighted Regression models

The SLM and GWR models were employed to explore and estimate the spatial determinants of PV 

uptake at local level using lagged predictors, responses and generate local regression coefficients to 

account for heterogeneity and incorporate spatial dependence to capture both the direct and indirect 

effects of the attributes. Table10 presents the estimation results for the SLMs. For the lagged response 

model, this displays an R2 of 43.4% with the lagged predictor model displaying an R2 of 50.7%, with 

an interactive autoregressive term (rho) of 61.4%. The results show the Urban coefficient within both 

model structures to comprise statistically significant (p<.001) negative effects.
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Table 10 Lagged response and predictor models

The GWR model shows a pseudo-R2 of 57.9% and is the best performing spatial model with the most 

stable Moran’s I residual error. Further, apparent spatial differences in the explained variance are 

discernible and demonstrate ranges in the local R2 values between 25% and 88% (Figure 8) 

demonstrating that the built environment, tenure and deprivation characteristics explain more variation 

within some SOAs. Whilst this is an obvious limitation of the GWR technique which can be masked by 

the global “pseudo” R2 estimate produced by the analysis, it also highlights that OLS is also, to an 

extent, misleading - only presenting the mean conditional estimate. The findings nonetheless show the 

efficacy of the GWR approach for understanding the nature and extent of PV adoption. The variation 

in the local R2 reveals a number of clustered SOAs, particularly in urban areas, to display the lowest 

levels of explanation, notably in the Belfast basin, a corridor to the South-East and pocket in the North-

West. Upon further inspection, the geographic variation in the level of explanation is more pronounced 

for rural areas as opposed to urban areas indicating that the determinants show higher explanation in 

the variation of PV uptake for rural SOAs. The model parameter estimates (Table 11) indicate 

substantial spatial variation and non-stationarity providing strong evidence that the marginal PV 

installations estimates of tenure, urban-rural classification and components of deprivation fluctuate 

across geographic space.  

Table 11 Local Regression Parameter Descriptive Statistics

In terms of the coefficients, as evidenced in Table 11, there is sizable variation. For the Urban 

coefficient, the local estimates range from -24.78 to 15.02, however the upper quartile is negative (-

1.65) demonstrating that urban areas, in the main, tend to comprise a negative effect on PV uptake in 

comparison to rural areas and inferring that PV adoption is an urban problem. That said, the largest 

positive effect of the urban coefficient appears to be in the North- and South-West urban SOAs (Figure 

8). The Mixed coefficient sees value ranges between -6.44 to 3.99, symbolic of heterogeneity and 

demonstrating that these more peri-urban/peri-rural areas comprise spatially differential effects in PV 

uptake. 

The percentage of social and private rental housing show local estimates ranging between -2.56-1.77 

and -2.10-1.31, with both median negative and the private rental coefficient remaining negative at the 

upper quartile range (Table 11). Spatially, the social rent coefficient demonstrates a relatively consistent 

spatial effect, however does show the band to the South-East and an enclave in the South-West to 

comprise more pronounced negative effects. There is however evidence of positive local effects in the 

South-West and also an arc-type corridor in the Mid-West area. A similar spatial relationship is 
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observed for the private rental sector coefficient, however subtle spatial differences are notable 

particularly in the South-West region which displays a small cluster of positive effects. 

Figure 8 GWR coefficient maps

Economic status appears to be a more influential driver in the West to South-West region, with the 

South-East noting the opposite effect. For the Social cohesion coefficient, this comprises a negative 

effect spatially with corridor spanning to the West of the region and South comprising the largest 

negative effect. The findings do however show a localised positive effect towards the South-East region. 

The Wellbeing coefficient shows more regional disparity with the Northern SOAs exhibiting much 

more localised negative effects compared to remainder of the region with the exception of the South-

East area which exhibits a positive effect.

4.4 Logistic regression findings

For the logistic regression findings, the binary models are run based upon the expectation that, if Urban, 

it is equal to 1, (meaning it is present if the SOA is Urban), thus if Rural it is equal to zero. The model 

tests exhibit the significant Chi-Square (intercept only) prediction model to fit the data than a null model 

(non-predictors), revealing a statistically significant improvement in the overall model ‘fit’. The model 

findings (Table 12) reveal that for the Urban logistic model, the number of PV installations is negative 

(-0.022, p<.001) in terms of unstandardised beta coefficient, signifying that a unitary increase in PVs 

comprises a decrease in the likelihood of it being urban. When examining the exponential of beta (Exp(𝛽

)) or odds ratio (calculated as the ratio of probability), the results show that the odds of Urban is lower 

for a higher number of PVs, implying that the probability of Urban is lower for the increase in PVs. 

This indicates that for an additional unit increase in PV uptake, the odds of Urban is lower and 

decreasing by a factor of 0.978 for an additional one unit increase in PV installations. In the results, this 

illustrates the odds of ‘urban’ is lower by 2.2% (0.978*100-100). In terms of tenure composition, the 

percentage increase in Owner, Social and Private rented display positive coefficients, with the odd ratios 

suggesting that as the tenure rates increase the likelihood of it being an Urban SOA increases between 

94-99.1%. For the deprivation constructs, Economic status displays a negative coefficient (-0.766, 

p<.001) with an odds ratio of 0.465. This suggests that decreases in economic status increase the 

likelihood of an urban SOA. More specifically, the Log odds likelihood of falling into the urban 

classification decrease by a factor of 0.465 - simply put, the odds ratio shows that a one unit change in 

economic status results in a 0.465 times (or 545%) decrease in the logit probability of likelihood of 

being an urban SOA.

Table 12 Logistic Regression and Odds Ratios
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The rural model presents contrasting findings. The results show that PV uptake coefficient is positive 

(0.002, p<.05) with the odds ratio indicating that for every additional increase in PV uptake, there is 

increased likelihood of it being ‘rural’, with the odds of being rural higher by 0.2%. Interestingly, the 

Economic status measure shows a positive coefficient (0.528, p<.001) and odds ratio of 1.695, 

indicating that as economic status increases the likelihood of it being a rural SOA increase by 69.5%. 

Alternatively, both the Social capital and Wellbeing coefficients are negative (Table 13), illustrating 

that as these measures increase the likelihood of the SOA classification being rural decreases by 88.7% 

and 50% respectively. 

5. Discussion 

This study has applied various spatial modelling methodologies to examine the localised insights to 

accurately represent the complex intra-urban spatial variability of PV system uptake to help inform 

policy targeting and direction. Specifically, it analyses domestic PV adoption at the regional level in 

the U.K., to establish whether housing market characteristics and composition – fed by localised 

demand and supply factors, demonstrate potential ‘peer effects’ and the understanding of the profile of 

typical PV uptake across the region. The empirical findings support the presence of geographical 

segmentation and clustering in relation to PV adoption and diffusion. This localised disequilibrium 

clearly illustrates that peer effects and the structure of the wider built environment and composition of 

housing stock, density and tenure coupled with deprivation levels do seemingly have an impact upon 

PV uptake. Pertinently, we find that a rural-urban dichotomy exists for PV adoption, a finding in 

accordance with Graziano and Gillingham (2015) who demonstrated smaller or rural communities adopt 

PV more so than larger urban areas.

Nonetheless, a caveat to point out is that whilst the nature and role of these effects are significant, there 

remains approximately 45-50% of unexplained variance – notably larger in urban locals - suggesting 

that wider ‘unknown’ behavioural, cultural idiosyncrasies are also undoubtedly driving the uptake of 

PV installations. This is in accordance with Baginski and Weber (2019) who indicated that spatial spill-

over is not always driven by social imitation but also by unobserved regional characteristics. 

The study of Balta-Ozkan et al. (2021) questioned whether PV systems yielded different outputs 

between urban and rural areas, with Balta-Ozkan, Yildirim and Connor (2015a) establishing that less 

dense areas were early adopters. The findings here have identified that there are spatial trends evident, 

and particularly that an urban-rural divide (difference) in PV adoption is notable. Whilst we do note 

some of the urban SOAs exhibit pockets of clustering of PVs, as identified in the locally weighted 

coefficients, this was primarily concentrated in the key conurbation the North-West region, suggesting 

that at the regional level this is very much an urban problem. Accordingly, behavioural factors seem to 

certainly play a key role, and this appears to be more prominent in rural areas in relation to PV uptake, 

and arguably driven by small scale one-off development such as ‘green jewellery’ self-builds – through 
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integrated renewable energy design and desirability for ‘going green’ and/or the identification of ‘cost 

savings’ achievable through the adoption of PV systems. Indeed, this finding, in accordance with Davies 

et al. (2017) which also revealed an urban-rural divide in energy efficiency in the housing stock, 

pointing towards a potentially more receptive population regarding environmental consciousness and 

awareness driven by peer effects networking within the agriculture community. This is further 

substantiated when considering the nature of the existing housing stock in rural versus urban locales. 

Rural housing tends to be detached, larger in floor area and thus increased availability of roof space - 

with larger PV systems24, which conforms with the findings of existing research (Davidson et al., 2014; 

Briguglio and Formosa, 2017; Rode and Weber, 2016; Balta-Ozkan et al., 2015a).

In line with this finding, the role of tenure appears to be an important dynamic impacting upon the 

adoption or transition to solar PV. While the Social rented coefficient was negative, enclaves of positive 

PV effects are evident which avers that the role of social housing provision is important for increasing 

PV installations en masse. Indeed, the positive localised coefficients appear to be driven by new large 

scale social housing development which comprise solar PV systems. In a similar vein, the findings 

clearly demonstrate that the proportion of private sector rental housing within an SOA comprises a 

negative effect on PV installations. Rather worryingly, and whilst the tenure data used in the study is 

borne from the 2011 census, there has been a manifest increase in the level of private sector rental 

housing stock since this period – certainly within the NI and wider UK context, which only serves to 

reinforce the importance of this study’s findings. In addition, density was shown to display a negative 

impact upon PV uptake with residents located in less densely populated areas seemingly more likely to 

install a PV system, consistent with extant research (Müller and Rode, 2013).

The role of deprivation appears significant, particularly for potential peer effects. Economic status or 

accumulated capital, as identified by Balta-Ozkan et al. (2015a) clearly displays a positive impact on 

PV uptake. When considered alongside urban-rural typology, the interaction between deprivation 

disadvantage and urban setting impedes PV adoption. This suggests that differences in income and 

educational attainment (higher versus lower status) result in the ability to afford the costs of PV 

installations in line with studies other studies (Bollinger and Gillingham, 2012; Briguglio and Formosa, 

2017). Or alternatively, those potentially residing in urban environments which are harmful to health 

and wellbeing, comprising more dense and lower quality housing stock lack any incentive or capacity 

for PV uptake. 

6. Conclusions 

Given that residential housing is such a significant contributor to greenhouse gas emissions, it is 

important to understand from a housing market perspective what determinants can impact upon the 

24 Analysis of the rural and urban average system size shows the average size of a PV system in an urban area is 9.2kW, with 
rural PV systems 17.4kW, on average.
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uptake of much needed renewable energy sources and ascertain a spatial understanding of the significant 

determinants and adoption. Therefore, this research set out to add a contribution to knowledge and 

scientific rigour by identifying (i) the effects of different housing market factors on local spatial patterns 

of PV adoption in Northern Ireland and (ii) to determine whether geographical differences exist, not 

just in the environmental nature of sustainability across the urban form, but also whether social 

(cohesion) and behavioural dynamics are playing their part.  

The study, by empirically assessing the spatial diffusion of PV installations has provided localised 

insights, applying several nuanced spatial regression approaches,  to accurately represent the complex 

intra-urban spatial variability of PV system uptake to help inform policy targeting and direction in 

relation to the ‘greening’ of the built environment. The results reveal some subtle differences in PV 

uptake and diffusion, which seemingly appear to be linked to housing market structure and composition. 

The application of these spatially based (local) models also confirmed the presence of spatial 

dependency and clustering which would seem to suggest that some aspect of ‘peer effects’ are evident, 

and where there appears very localised adoption conforming with aspects of social sustainability. This 

tendency for spatial randomness, and more characteristic of the pepper-potting of PV installations 

consistently within and across more rural areas which infers that single-dwelling ‘self-builds’ are more 

likely to adopt PV uptake, than urban based development (housing) schemes. 

This confirms that there are clear prosocial behavioural dynamics, environmental consciousness and 

rational economic decisions at play when considering PV installation, and more so, limited social, 

environmental and economic appetite from the more wholesale development community to incorporate 

PV into scheme design. These behavioural, and perhaps cultural tastes are also undoubtedly driving the 

uptake of PV installations which suggest that from a social sustainability lens, rural communities 

seemingly have more formal and informal hues (relationships; processes; structures) to create and 

influence more healthy and liveable communities through integrated renewable design and 

identification of ‘cost savings’ achievable through the adoption of PV systems, pointing towards a 

potentially more receptive population regarding environmental consciousness and awareness driven by 

peer effects networking within more rural communities. 

Further, the findings detect that economic standing does comprise a positive effect on renewable energy 

adoption, indicating that owner-occupied and those from least deprived areas, particularly rural 

residents, are more likely to install renewable energy sources such as PV systems. It is therefore 

axiomatic that the converse is also case in that those households in rented (especially private rented) 

accommodation, exhibiting lower levels of income, employment and education, located in urban areas 

are least likely to have installed solar PV systems, which presents quite the quandary for policy makers 

and targeting initiatives within the housing system. 
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From a ‘greening’ of housing through the lens of adopting renewable technology, the results show that 

previous policy levers have, by-and-large, been unsuccessful in the adoption and uptake of renewable 

solar energy – certainly when considering the spatial nature of the uptake, and in terms of the UN 

Sustainable Development Goals of affordable and Clean Energy, sustainable cities and communities 

and combating fuel poverty. The previous policy lever to encourage PV adoption with financial 

incentivisation via the ROCs scheme was clearly an attractive proposition to a particular section of the 

community, but this research has established that as a policy driver its success was far from spatially 

uniform, with urban areas in particular not availing of financial incentives or initiatives, something 

which government need to take account of for future policy development. 

Indeed, recent events within the global political economy, allied with heightening inflationary 

pressures, has thrown the green agenda and aspects of affordability in terms of the cost of living crisis 

and fuel poverty into sharp focus. The findings emanating from this research indicate that the 

installation of this type of renewable energy source, has the ability to alleviate the mounting cost of 

living pressures primarily from energy pricing, however, and most notability, not primarily for those 

who are in most ‘need’, with limited uptake exhibited by communities residing in areas of low(er) 

deprivation. Moreover, the findings show that tenure has an important role to play both in policy and 

practice. The advancement of the Private Rental Sector has obvious implications for the transition 

towards net-zero carbon neutrality in the housing sector. Our results show that the higher percentage of 

rental housing within an SOA, particularly urban based SOAs, lack PV adoption. This finding ties in 

with some important policy questions in relation to rental market regulation and some practical 

implementations for the split incentive debate. 

Key questions for any targeted policy intervention are where and how to implement successfully. Our 

findings suggest that from an planning and urban policy perspective, the dichotomy that exists between 

uptake of PV adoption provides important insights as to where to target incentives such as differential 

grant funding and policy levers to areas where uptake would be supported, or conversely encourage the 

adoption in areas of  lower socio-economic standing. This is not only critical information to help account 

for energy modelling and energy costing, but for providing access to those more disadvantaged groups 

of urban renters, or the hidden rural poor to key low cost at the point of use renewable energy resources.
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Endnotes

i PCA requires that the correlation matrix R = (R[Rmm]) is obtained through the transformation of the data matrix 
X = (X[mn]) into a matrix of standardised scores [Z] which are computed using the mean and standard deviation 
for each row m of the data matrix where m is the number of elements (variables) and n is the number of 
observations (column vectors) in the dataset. This is represented by the following formula:

𝑌𝑇 =  𝑋𝑇𝑊 = 𝑉∑𝑇 (𝑋)
where the matrix is a diagonal [m x n] diagonal matrix with non-negative real numbers on the diagonal and W  ∑
VT is the singular value decomposition of X. The variance is equal to the trace of the matrix, the sum of the 
diagonals or the number of observed variables in the analysis, minimising the sum of the squared perpendicular 
distance to the component axis. The factor scores [Snp] for the original n observation, on each p component are 
calculated by the following formula:

𝑆𝑛𝑝 = (𝑍𝑚𝑛 ∗  𝐿𝑇
𝑝𝑚)(𝑋)
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ii As de Smith et al. (2007) suggest the most common of which is the small sample corrected (asymptotic) Akaike 
information criterion (AICc)ii. This statistic applies the maximum likelihood estimates of the model parameters 
which is expressed as:

𝐴𝐼𝐶 =  ― 2ln (𝐿(𝛽│𝑑𝑎𝑡𝑎)) + 2𝐾
where L  is the log-likelihood function. In the regression setting, the estimates of  are based on least (𝛽│𝑑𝑎𝑡𝑎) 𝛽𝑖
squares and the maximum likelihood estimates which are identical. The estimates are based on maximum 
likelihood estimates of the model parameters which provide an approximate AIC value:

𝐴𝐼𝐶 = 𝑛 + 𝑛𝑙𝑛(2𝜋) + 𝑛log (𝑅𝑆𝑆
𝑛 ) + 2𝐾

iii The predictors are assessed within the model by examining the individual ‘fit’ employing the Wald statistic (z) 
and odds ratio (Exp of β). The z statisticiii indicates whether the β-value for the predictor is significantly different 
from 0; illustrating its significant contribution to the prediction of the outcome (Y). The odds ratio reflects the 
exponential of β and is an indicator of the change in odds resulting from a unit change in the predictor, with the 
odds of an event occurring defined as the probability of an event occurring divided by the probability of the event 
not occurring:

P(Y) = 
1

1 + 𝑒
―(𝑏0 + 𝑏1𝑋1𝑖 + 𝑏2𝑋2𝑖…𝑏𝑛𝑋𝑛𝑖) 

Where the Odds = ;  ; 
𝑃 (𝑒𝑣𝑒𝑛𝑡)

𝑃 (𝑛𝑜 𝑒𝑣𝑒𝑛𝑡) 𝑃(𝑒𝑣𝑒𝑛𝑡 𝑌) =  
1

1 + 𝑒
―(𝑏0 + 𝑏1𝑋1𝑖 

𝑃(𝑒𝑣𝑒𝑛𝑡 𝑌) = 1 ― 𝑃(𝑒𝑣𝑒𝑛𝑡 𝑌)

This provides the odds before and after a unit change in the predictor variable, thereby demonstrating the 
proportionate change in odds (Odds ratio) which can be interpreted as a value exceeding 1 (>1) to show that as a 
predictor increases, the odds of the outcome occurring increase, with <1 indicating that as a predictor increases, 
the odds of the outcome occurring decrease.

Parameter estimates averaged across OLS models using AICc Weights (wi) 

Variable Importance Coeff. Std Coeff. Std Error t 95% 
Lower

95% 
Upper

Constant - 30.857 0 2.092 14.753** 26.757 34.956
Mixed 0.428 -2.386 -0.033 0.85 -2.808** -4.051 -0.72
Urban 1 -7.915 -0.197 1.811 -4.37** -11.465 -4.365
Social Rented % 0.419 -0.083 -0.061 0.032 -2.62** -0.145 -0.021
Private rented % 0.926 -0.159 -0.076 0.057 -2.782** -0.271 -0.047
House/Ha 0.884 -0.161 -0.088 0.058 -2.787** -0.274 -0.048
Avg. HP 0.303 0.001 0.017 0.001 1.856 0.0003 0.0018
Economic [1stPC] 0.92 1.362 0.143 0.406 3.36** 0.568 2.157
Social [2ndPC] 1 -6.964 -0.386 0.772 -9.024** -8.477 -5.452
Environment [3rdPC] 1 -3.296 -0.162 0.578 -5.707** -4.428 -2.164
n 890
R 0.686
R2 0.470
Adj. R2 0.466
AICc. 7,275.08
Note: Spatial parameters are excluded from initial model testing. PC = Principal Component.
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Tables and Figures

Tables

Table 1 Descriptive statistics of PV installations and kW capacity within SOAs

PV installations per SOA kW capacity per SOA
Mean 22.072 89.501
S.E. of Mean 0.656 2.82
Std. Deviation 19.566 84.131
Minimum 0 0.4
Maximum 173 909.62
Range 173 909.62
1st Quartile 8 33.32
Median 16 63.855
3rd Quartile 30 123.04
n 890 890

Table 2 Explanatory variables descriptions and data sources

Variable Description Year Data 

Source

PV installations The number of PV installations within each SOA 2020 OFGEM

Houses per Hectare (House/Ha) Number of houses per Hectare within each SOA 2017 NISRA

Multiple Deprivation Measure 
(domains)

Ranking of MDM domains from least deprived to 
most deprived across each SOA

2017 NISRA

Average House Price The average house price within each SOA 2020 UU HPI
Rural-urban classification The composition of SOAs by their urban, rural or 

mixed determination
2020 NISRA 

Household tenure The percentage of Owner-occupied, rental and 
social housing within each SOA

2011 ONS 
Census

Note: All data is presented at SOA scale level. 

Table 3 Spearman’s (rho) correlation coefficients between deprivation domains

 Income Employment Health Education Access Environment Crime
Income 1       
Employment .693** 1      
Health .595** .955** 1     
Education .713** .859** .888** 1    
Access 0.047 -.334** -.424** -.397** 1   
Environment .230** .208** .187** .182** -.227** 1  
Crime .424** .701** .733** .707** -.630** .277** 1
PVs per SOA -.149** .566** .250** .240** -.659** .069* .407**

**denotes significance at the 1% level; *denotes 5% level.
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Table 4 Extraction variance

Components Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of 
Variance

Cumulative 
% Total % of Variance Cumulative %

1 4.195 59.930 59.930 3.537 50.535 50.535
2 1.175 16.792 76.722 1.708 24.394 74.929
3 30.924 13.205 89.927 1.050 14.998 89.927

Note: Extraction method; principal component analysis.

Table 5 Rotated loadings of the principal components

Component 
loading 1

Component 
loading 2

Component 
loading 3

Explained variance 50.54% 24.39% 14.99
Employment 0.929
Health 0.887
Education 0.870
Income 0.855
Access -0.945
Crime 0.615 0.645
Environment 0.979

      Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 
       Normalization. a. Rotation converged in 5 iterations.

Table 6 OLS Model Selection procedure sorted by AICc

Model Variables nVars R² Cond.Num. AICc Delta 
AICc L(gi|x) AICc wi

Mod #334 1, 2, 3, 4, 5, 7, 8, 9 9 0.471 3.755 7267.74 0 1 0.189
Mod #79 1, 2, 3, 4, 5, 7, 8, 9 8 0.472 4.166 7268.20 0.459 0.795 0.15
Mod #271 2, 3, 4, 5, 7, 8, 9 7 0.471 4.777 7268.82 1.08 0.583 0.11
Mod #16 1, 2, 3, 4, 5, 7, 8, 9 8 0.472 4.9 7269.47 1.726 0.422 0.08
Mod #327 2, 4, 5, 6, 7, 8, 9 7 0.471 3.773 7269.62 1.878 0.391 0.074
Mod #72 1, 2, 4, 5, 6, 7, 8, 9 8 0.472 4.19 7270.04 2.3 0.317 0.06
Mod #264 2, 3, 4, 5, 6, 7, 8, 9 8 0.472 5.003 7270.58 2.831 0.243 0.046
Mod #9 1, 2, 3, 4, 5, 6, 7, 8, 9 9 0.472 5.115 7271.19 3.442 0.179 0.034
Mod #349 2, 4, 7, 8, 9 5 0.467 3.168 7271.97 4.223 0.121 0.023
Mod #274 2, 3, 4, 5, 8, 9 6 0.468 3.428 7271.99 4.254 0.119 0.023
Mod #286 2, 3, 4, 7, 8, 9 6 0.468 4.274 7272.06 4.316 0.116 0.022
Mod #365 2, 5, 7, 8, 9 5 0.467 3.622 7272.21 4.461 0.107 0.02
Mod #267 2, 3, 4, 5, 6, 8, 9 7 0.469 3.481 7272.39 4.645 0.098 0.019
Note: In total 511 OLS models run with the first 13 presented. Response variable is No. Res PV by SOA. 
Variable #1: Mixed; #2: Urban; #3: % Social rented; #4: % Private rented; #5: House/Ha; #6: Avg. House Price; 
#7: Economic status (PC1); #8: Social capital (PC2); #9: Wellbeing (PC3). Spatial parameters are excluded 
from initial model testing 

Table 7 Moran’s I values across the distance classes 

D. Class Dist. Cntr PVs Social Rent Private 
Rent Houses/Ha Economic 

status
Social 
Capital Wellbeing

1 3670.8 0.398** 0.311** 0.081** 0.969** 0.269** 0.744** 0.058**
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2 9874.3 0.226** -0.031** -0.074** 0.174** -0.127** 0.467** 0.016**
3 15213.1 0.066** -0.034** -0.038** 0.054** -0.061** 0.211** 0.028**
4 20234.1 0.014** -0.073 0.011 -0.016* -0.078** 0.116** -0.032**
5 25369.0 -0.064** -0.053** 0.014** -0.12** -0.032** -0.02** -0.012**
6 30773.3 -0.061** -0.011 0.038** -0.071** 0.052** -0.047** 0.009
7 36082.3 -0.044** -0.024** 0.029** -0.128** 0.004 -0.114** 0.009
8 41396.1 -0.048** -0.035** -0.013** -0.115** 0.003 -0.095** 0.028**
9 46792.1 -0.055** -0.038** -0.04** -0.138** -0.008 -0.136** 0.011
10 52154.3 -0.013* -0.028** 0.037** -0.158** 0.026** -0.121** 0.023**
11 57778.2 0.002 -0.047 .001 -0.158** -0.016** -0.164** -0.006
12 64158.2 -0.044** -0.025** -0.028** -0.101** 0.005 -0.214** -0.059**
13 71240.1 -0.06 .001 -0.013** -0.054** -0.009 -0.162** -0.051**
14 78706.7 -0.092** 0.015** -0.006 -0.052** -0.005 -0.136** -0.021**
15 86919.7 -0.031** -0.013** 0.019** -0.067** -0.01** -0.086** <.001
16 95564.4 -0.021** 0.08** -0.025** 0.009 0.068** -0.038** 0.002
17 105146.6 -0.093** 0.066** -0.013** 0.004 -0.041** -0.143** -0.006
18 137843.7 -0.1** -0.082 0.003 -0.051** -0.06** -0.083** -0.016**

Note: Urban and mixed variables are binary and cannot be produced. **denotes significance at the 1% level; * 
5% level.

Table 8 OLS and Poisson model results

Variable OLS model Poisson model
Coeff. VIF t Coeff. VIF z

Constant 52.506 5.2** 3.99 29.571**
Urban -7.716 2.879 -4.655** -0.213 2.879 -8.241**
Mixed -1.235 1.207 -3.157** -0.151 1.207 -6.135**
Social Rented % -0.036 3.891 -0.557 0.001 3.891 0.95
Private rented % -0.194 1.412 -3.189** -0.015 1.412 -10.91**
House/Ha -0.098 2.205 -1.483 -0.028 2.205 -17.328**
Economic status [PC1] 1.464 4.604 2.942** 0.05 4.604 5.576**
Social capital [PC2] -6.247 2.77 -8.568** -0.246 2.77 -21.237**
Wellbeing [PC3] -3.122 1.302 -5.541** -0.079 1.302 -9.469**
X coord. <.001 1.508 -3.962** <.001 1.508 -9.41**
Y coord. <.001 1.158 -0.178* <.001 1.158 1.367*
R2 0.482 0.508
Adj. R2 0.477
F 90.817
AICc 7255.72 9703.58
n 890 890
Note: Various polynomial expansions were applied to the geographic coordinates to increase explanation 
and model stability. The R2 for the Poisson model is a pseudo-R2.

Table 9 Eigenvector Spatial Filter model coefficients 

Coefficients V.I.F.
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Intercept 31.02**
Urban -7.376** 3.784
Mixed -1.099 1.333
Social Rented % -0.055 4.357
Private rented % -0.179** 1.479
Houses/Ha -0.097 2.568
Economic status [PC1] 1.932* 4.701
Social capital [PC2] -6.523** 2.914
Wellbeing [PC3] -4.104** 1.384
Filter 1 -80.354** 1.97
Filter 2 11.885 1.059
Filter 3 29.971* 1.094
Filter 6 -5.625 1.146
Filter 7 58.38** 1.061
Filter 8 -24.393* 1.051
Filter 10 -31.873* 1.069
Filter 12 3.286 1.043
Filter 13 -55.404** 1.022
Filter 25 -45.01** 1.012
Filter 31 23.883 1.01
Filter 38 -9.131 1.05
Filter 50 -20.96 1.03
Filter 51 -28.022* 1.043
Filter 54 -22.143 1.024
Filter 64 -33.237** 1.027
Filter 71 28.688* 1.007
Filter 93 -46.492** 1.012
Filter 122 38.191** 1.015
Filter 228 40.503** 1.005
Filter 229 -27.686* 1.007
[a] Predictors only R2 .463**
[b] Filters only R2 .335**
Shared explained variance .273**
Full model (Predictors + filters) .524**
AICc 7214.52

Note: **denotes significance at the 1% level, *5% level.

Table 10 Lagged response and predictor models

Lagged response Lagged predictor
Variable Coefficient t Coeff. Gamma t
Constant -0.571 -1.063
Urban -0.375 -4.248** -0.189 0.647 -4.314**
Mixed 0.008 0.08 -0.014 0.146 -0.496      
Social Rented % 0.007 2.125* -0.06 0.541 -1.132
Private rented % -0.012 -3.686** -0.094 0.59 -2.615**
House/Ha 0.008 2.277* -0.125 0.703 -3.137**
Economic Status [PC1] 0.108 4.096** 0.091 0.582 1.543
Social Status [PC2] -0.143 -3.686** -0.323 0.691 -7.338**
Wellbeing [PC3] -0.183 -6.115** -0.161 0.387 -5.643**
X coord <.001 3.481** -0.273 0.942 -3.696**
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Y coord <.001 -0.372* -0.07 0.926 -1.078
R 0.484 0.554
R2 0.434 0.507
Autoregressive (ρ)1 0.614 0.614
SE of rho 0.637 0.637
AICc 7327.18 7257.438
n 890 890

Note: 1Response Variable Spatial Autoregressive Coefficient (rho).

Table 11 Local Regression Parameter Descriptive Statistics

Variable Min. Lower Q. Median Upper Q. Max.
Constant 11.4623 27.7003 30.0051 35.2714 105.639
Urban -24.7811 -10.1705 -9.1423 -1.6533 15.0238
Mixed -6.5463 -2.8750 -1.0260 0.0321 3.9867
Social Rented % -2.566 -0.2305 -0.0424 0.0036 1.7739
Private rented % -2.0967 -0.4402 -0.1136 -0.0735 1.3108
House/Ha -2.6108 -0.5268 -0.1404 -0.1184 1.4711
1st Principal Component -16.5704 0.53643 1.0767 1.1383 18.874
2nd Principal Component -14.3369 -7.0982 -4.6302 -4.0915 7.4530
3rd Principal Component -10.6866 -3.1638 -1.8728 -1.5004 13.1481
R2 .625
Adj. R2 .579
F 12.968
AIC 7185.35
n 890

Optimization using The Golden Section Search, and Akaike Information Criterion (AICc), searching from 
26084.26 to 39126.39 distance units. The analysis examined various spatial weighting functions (Bi-Square; 
Moving Window; Adaptive Spatial Kernel for minimising nearest neighbours using AIC optimisation).

Table 12 Logistic Regression and Odds Ratios 

Urban Rural
Variable Coefficient t Exp(𝛽) Coefficient t Exp(𝛽)
Constant -64.737 -3.682** .001 66.572 4.611** .001
No. of PVs -0.022 -2.069* 0.978 0.002 2.211* 1.002
Owner 0.663 3.662** 1.94 -0.701 -4.698** 0.496
Social 0.689 3.668** 1.991 -0.743 -4.717** 0.476
Private 0.682 3.721** 1.978 -0.699 -4.642** 0.497
House/Ha 0.331 5.448** 1.392 -0.117 -2.544* 0.889
Economic status -0.766 -3.93** 0.465 0.528 3.275** 1.695
Social capital 2.353 7.348** 10.514 -2.178 -8.508** 0.113
Wellbeing 1.089 4.939** 2.97 -0.694 -4.279** 0.500
McFadden's 2𝜌 0.7656 0.6436
Chi-Squared 906.272** 699.844**
AIC 295.5088 405.494
LL(0) -591.891 -543.669
LL(N) -138.754 -193.747
2*[LL(N)-LL(0)] 906.2723 699.844
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Note: Results for Urban & Rural as response variables. Classification Table and Measures of Accuracy available upon request. 
**denotes significance at the 1% level; *5% level. 

Figures

Figure 1 Local distribution of the number of PV installations and KW output at SOA level across 
NI

Figure 2 The Classification and spatial distribution of SOAs and MDM

Figure 3: Correlation Biplots for extracted factors
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Figure 4 Spatial representation of the extracted and retained Principal Components
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Figure 5 L.I.S.A spatial structure (PV installations)

Figure 6 L.I.S.A Scatterplots for PV across avg. nearest neighbour classifications
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Figure 7 Extracted Spatial Filters1

1 A selected number of Spatial Filters are displayed due to space limitations. The full list of the extracted 21 
Filters are available upon request.
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Figure 8 GWR coefficient maps 
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