

Solar PV An Assessment of the Household Characteristics, Utility and Potential of Photovoltaic Electricity Generation from Residential Property Rooftops in Northern Ireland

MacIntyre, S., McCord, M., Davis, PT., & Zacharopoulos, A. (2021). *Solar PV An Assessment of the Household Characteristics, Utility and Potential of Photovoltaic Electricity Generation from Residential Property Rooftops in Northern Ireland*. Ulster University. https://doi.org/10.13140/RG.2.2.31754.18881

Link to publication record in Ulster University Research Portal

Publication Status: Published online: 01/10/2021

DOI: http://dx.doi.org/10.13140/RG.2.2.31754.18881

Document Version Publisher's PDF, also known as Version of record

General rights

Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Solar PV

An Assessment of the Household Characteristics, Utility and Potential of Photovoltaic Electricity Generation from Residential Property Rooftops in Northern Ireland.

Sean MacIntyre

Dr Michael McCord

Dr Peadar Davis

Dr Aggelos Zacharopoulos

14th September 2021

Summary of Key Findings

Current PV Installations and Households

- a) There are 19,644 solar PV systems of 6.5Kilowatt capacity or less (likely to be residential) currently in Northern Ireland. This equates to 2.5% of the housing stock.¹
- b) In total, these 19,644 PV systems have a generation capacity of 79.6MWh.
- c) Between 2013 and 2016 the number of PV systems installed in the province experienced rapid growth. In total, 91.6% of all PV installations were installed in the years 2013 to 2016 while the ROCs scheme, which provided financial incentives to households to install PV, was in operation.
- d) The ending of the ROCs scheme in 2017, has halted new PV installations.
- e) Households with PV installed typically have an annual reduction of 30% in electricity imported from the grid compared to pre-install electricity import consumption.
- f) PV equipped households which have "Solar Plus" devices such as PV water heaters (costing £300) benefit from zero carbon hot water and export approximately 20% of generation to the electricity grid.
- g) PV households without "Solar Plus" PV water heaters export 70% of generated electricity to the grid.
- h) Current PV system owners in Northern Ireland can be characterised as predominantly living in rural areas, owner occupiers, with high educational attainment and are in the third and fourth least disadvantaged quintiles of the NISRA Multiple Deprivation Measure.

The Potential for PV Generation

- i) There are 821,250 dwelling and 426,858 domestic garage building polygons in the OSNI database of the province with a rooftop area of 67,289,866m² (dwellings) and 13,115,428m² (garages) totalling 80,405,294m² (80.4 Km2) of residential roof area.
- j) With a roof availability figure of 35% for Solar PV, the assessed residential (dwellings and garages) potential annual generation for the province is 4,401 GWh.
- k) In 2016-17 domestic electricity consumption in the province was 2907 GWh (DfE, 2020, P39), with a monthly average consumption of 242 GWh. Rooftop Domestic Solar PV has the potential to generate significantly more than this demand on an annual basis and exceed monthly demand for the months March to October.

¹ based on 785,684 Built Dwellings, Pointer Database 2020 and PV data from OFGEM

Paragraph	Section	Page
		Number
	Summary of Findings	2
	Index	3
1.1	Background and Policy Context	4
2.0	Characterisation of Current PV Installations in Northern Ireland	5
2.1	Location of Solar PV Installations	7
2.2	Urban Rural Distribution of Solar PV at Small Area Level	9
2.3	Solar PV User Characterisation	12
2.3.1	The Distribution of PV Installations and Deprivation	12
2.3.2	The Distribution of PV Installations and Income	16
2.3.3	The Distribution of PV Installations and Educational Attainment	17
2.3.4	The Distribution of PV Installations and Housing Tenure	18
3.0	Assessing the Potential Rooftop Generation of Residential PV in Northern	20
3.1	PV Potential Assessment Methodology Components	20
3.2	Spatial Analysis Methodologies	20
3.3	Determining Proportion of Rooftop PV Installation Availability	22
3.4	Typical Solar Panel Size, Area and Output	23
3.5	Building Orientation	24
3.6	Location and Solar Irradiation	25
4.0	Potential PV Rooftop Generation Results	27
5.0	Case Study PV Installation Generation and Usage	34
5.1	Household PV Impacts on Energy Imported from the Electricity Network.	34
5.2	Solar Plus Technologies: PV Solar Water Heaters	33
5.3	Assessing the Impact of PV Water Heaters on Household Electricity Usage	36
6.0	Findings and Conclusion	38
6.1	Solar PV Installation Numbers	38
6.2	PV Installations Locations	38
6.3	PV impacts on household Electricity Consumption	38
6.4	Solar Water Heaters	38
6.5	Characteristics of Current Solar PV Households	39
6.6	The Potential for Residential PV Generation in N. Ireland	39
6.7	Conclusion	39
	References	41

Contact Sean MacIntyre Senior Lecturer Belfast School of Architecture and the Built Environment Ulster University Email: <u>s.macintyre@ulster.ac.uk</u>

1.1 Background and Policy Context

One of the last pieces of legislation enacted by Theresa May's government in June 2019 was the introduction of The Climate Change Act 2008 (2050 Target Amendment) Order 2019. This Order set a target for the net UK carbon account for the year 2050 to be 100% lower than the 1990 baseline, changing the Climate Change Acts initial 80% reduction goal, this new target has become known as "net zero carbon".

The UK has under 29 years to achieve this net zero objective, which amounts to an 87% reduction in CO₂ emissions compared to 2017 levels. Its attainment will necessitate societal, behavioural and technological changes, in the ways and extent to which we generate and consume energy. The Committee for Climate Change report, that in part prompted the adoption of the Net Zero target, foresees the *"extensive electrification, particularly of transport and heating, supported by a major expansion of renewable and other low-carbon power generation"* (Committee on Climate Change, 2019:23). This decarbonization process will necessitate the increasing use of renewable energy sources as a means of achieving these targets. A component of this is likely to be an extension of renewable energy production away from largely centralised electricity generation and towards home energy production and consumption.

Solar Photovoltaic (PV) is a mature technology and its adoption has increased dramatically in the last decade while the price of domestic PV systems has halved over the same period. A PV 4 kWp system now costs approximately £5,000, because of this and its comparative ease of installation, solar PV is very likely to have a role in achieving the Net Zero target.

Solar Photovoltaic (PV) panels operate by converting solar radiation into electricity. *"Photovoltaic systems contain cells that convert sun-light into electricity. Inside each cell there are layers of a semi-conducting material. Light falling on the cell creates an electric field across the layers, causing electricity to flow. The intensity of the light determines the amount of electrical power each cell generates"* (Tyagi et al., 2013:444). PV installations can be large scale "solar farms" producing megawatts of electricity but the technology is also suitable for installation on domestic rooftops.

2.0 Characterisation of Current PV Installations in Northern Ireland

PV Installation Quantification:

This research utilised a comprehensive data set of PV installations in Northern Ireland provided by OFGEM and incomplete PV data provided by Northern Ireland Electricity Network (NIEN) and the NI Housing Executive (NIHE). The OFGEM data set contained details of 22229 PV installations. The PV installations ranged in size from 0.4 to 49,500 kWp capacity. The average capacity was 14.5Kw and the median system size was 4Kw. The data contained complete details of PV size and installation date, commencing in 2002, of 22,207 PV systems and spatial data at Super Output Area (SOA) details for 22,084 installations. In the 19,644 PV installations assessed as to be residential (6.5 Kw or less) the median system size was 4Kw. Figure 1 below indicates several peaks in the numbers of installations in 2013, 2015 and 2016 and then a rapid decline in PV installations after 2017.

Figure 1 Number of PV System Installations by Date

Source: OFGEM Data

Further analysis of data provided by NIEN and the NIHE contained details of 13,476 PV installations including installation date information from 2012. As can be seen in Figure 2, a similar pattern of high installation numbers is evident with peaks notable in 2013, early 2014 late 2015 and late 2016 followed by a steep decline in the numbers of system installs post 2017.

Figure 2 PV Installations by Date

Source: NIEN Data

Analysis of the OFGEM data to produce a percentage of total PV system installations in the province by year produced the following results. In 2012, there were 696 PV installations, with 2013 observing 3,607 installations. In 2015, the number of installations increased to 6,485, representing an uplift of 832% from 2012 levels. In 2017, there were 576 installations – equating to a decline in PV uptake from 2015 levels of 704%. Overall, 91.6% of all PV systems in the province were installed in the years 2013 to 2016.

2.1 Location of Solar PV Installations

Analysis of both the NIEN Small Area (SA) PV and OFGEM SOA data was undertaken. THE SA level data was incomplete however has a higher geographical resolution, with the SOA level data being complete in terms of the number of PV installations, but was at a lower geographical resolution. Initial analysis of the NIEN SA data and NIHE data recorded 13,476 PV installations. Of the 4,537 SAs in the province, 1,170 did not contain any PV installations identified from the NIEN data set. Figure 3 below shows the distribution of PV installation at SA level for the Belfast Travel to Work Area (depicting approximately the East of the province from Ballymena to Downpatrick). As can be seen there are significantly lower numbers of PV installations within the Belfast conurbation.

Figure 4 Belfast Travel to Work Area PV installations by Small Area

Analysis of the OFGEM PV data at Super Output Area (SOA) level reported 22,089 PV installations and established the following spatial distribution across the province:

- Out of the 890 SOAs, all except four SOAs contained PV installations.
- The average number of PV installations by SOA was 25 and;
- the highest number of PV installations in a single SOA was 179.

In broad terms, urban areas, especially in the east of the province, tend to have lower PV installation rates compared to rural SOAs in the south and west of the province (See Figure 5) In addition, a significant number of SOAs within Belfast and its surrounding conurbation either have no, or very few, PV installations (Figure 6).

Figure 5 Number of Residential PV installations by SOA

Figure 6 Belfast and surrounding area residential PV installations by SOA

When the OFGEM residential PV data was mapped at Local Government District (LGD) level, as observed in Table 1 and Figure 7, the comparatively low levels of PV installations in the Belfast Metropolitan Area, North Down and Mid and South Antrim become apparent. This

distribution is similarly reflected in the PV installed kWp capacity, with Newry and Mourne DC emerging as the LDG with the highest capacity.

LGD NAME	Res PV Nos by LGD	Percentage PV by LGD	Total Res PV kWp Installed by LGD
Belfast	1185	6.0	4974
Antrim and Newtownabbey	1334	6.8	5345
Lisburn and Castlereagh	1425	7.2	5658
Ards and North Down	1641	8.3	6317
Mid and East Antrim	1730	8.8	8020
Causeway Coast and Glens	1886	9.6	7924
Mid Ulster	1974	10.0	6977
Derry City and Strabane	1989	10.1	8483
Fermanagh and Omagh	2019	10.3	7900
Armagh City Banbridge and Craigavon	2195	11.2	8607
Newry Mourne and Down	2302	11.7	9451
Total	19680	100.0	79656

Table 1 Residential PV data was mapped at Local Government District level

2.2 Urban Rural Distribution of Solar PV at Small Area Level

The NIEN data was mapped at SA level and then analysed to determine if its location was urban or rural in character. This was achieved by layering the PV data against the Settlement Development Limits data set available from NISRA. As the settlement development limits and SA boundaries are not co-terminus, the PV SA data had to be converted to centroids (dots as opposed to polygons) to facilitate the best fit between the data sets. Figure 8 illustrates the PV installation count by SA across the urban-rural boundaries for Belfast Metropolitan Area (BMA).

Figure 8 PV Installation count by SA across the urban-rural boundaries for BMA

As can be seen, there is a marked correlation between those SAs with zero PV installations and an 'urban setting'. When the spatial distribution of the SA level data was examined in relation to its urban/rural location, the analysis (Table 2) shows that two thirds of the PV installations in this SA data set are located within rural areas, leaving one third as urban.

	Nos PV SA Installations	% of PV SA Installations
Rural	8,961	66.5
Urban	4,515	33.5
Total	13,476	100.0

Table 2 PV installations in urban-rural classification

There was the potential, as the PV Small Area data only contained 61% of the known 22,000 PV installations, that this urban rural split was an artefact of which organisation the PV systems had been registered to and not their actual spatial distribution. In order to verify the urban/rural spatial distribution, the same analysis was undertaken as far as practicably achievable with the OFGEM SOA data set. SOA boundaries and development limits are not co-terminus, in many cases SOA boundaries stray over the settlement development limits. NISRA has, because of this, introduced an intermediate category of "Mixed; Urban; Rural" to categorise these SOAs. Figure 8 illustrates the urban rural distribution of SOAs. An example of a "mixed urban rural" would be the SOA containing Ballynure which is classified as a "Hamlet". While classified as "mixed" the majority of the SOA is in fact rural with only a small portion containing the settlement. The character of these "mixed" areas can therefore be viewed as predominantly rural.

Figure 9 Classification of Urban, Mixed and Rural

These NISRA urban, rural and mixed classifications revealed the following distribution of PV installations in urban, rural or mixed locations (Figure 10 and Figure 11).

Figure 10 Residential PV installations at SOA level for Urban, Mixed and Rural categories

Figure 11 Residential PV percentages at SOA level for Urban, Mixed and Rural categories

Further manipulation of the classifications indicates that when 'mixed' is classified as 'rural', the percentage split between the urban and rural PV installation is a one third urban to two thirds rural for both the OFGEM and NIEN data sets (Table 3).

Table 3 Altered Urban-Rural classifications

	Nos PV SA Installations	% of PV SA Installations		Nos PV SOA Installations	% PV SOA Installations
Rural	8,961	66.5	Rural/Mixed	12,616	64.2
Urban	4,515	33.5	Urban	7,028	35.8
Total	13,476	100.0	Total	19,644	100.0

The results from the analysis of both the OFGEM and NIEN PV data sets indicates that approximately 67% of PV installations in the province are located outside settlement development limits - in rural areas. There is also a marked difference in installation rates between Local Authorities in the Greater Belfast Area than the remainder of the province.

2.3 Solar PV User Characterisation:

2.3.1 The Relationship between the Distribution of PV Installations and Deprivation

The research objective was to assess the location of PV installations against the Northern Ireland Statistical Research Agency (NISRA) Multiple Deprivation Measures (MDM) and some of its constituent domains such as Income and Education. The NISRA MDM data ranks these measures at various geographies with 1 being the most disadvantaged, for Small Areas (SA) the least disadvantaged is ranked at 4,537 and for super Output Areas (SOA) the least disadvantaged is ranked at 890. The Small Area data from NIEN was linked to the NISRA

Multiple Deprivation Measure to determine how many PV installations fall with each quintile of the of the MDM rankings. The results as displayed in Table 4 and the Figure 12 below, indicates that the majority of PV installations are located within the SAs that are ranked in the third and fourth least disadvantaged quintiles with each containing 27% to 28% of installations. The first quintile (Most Disadvantaged) has substantially lower levels of PV uptake at 7.7% than the others.

Small Area MDM Rank		Nos PV Installations	Mean by SA	Percentage by Quintile
1 -907	Most Disadvantaged	1011	1.1	7.7
908-1814		2622	2.9	19.9
1815-2722		3678	4.1	28.0
2723-3629		3583	4.0	27.3
3630-4537	Least Disadvantaged	2251	2.5	17.1
Total		13145		100.0

Table 4 PV installations by SA Deprivation Rank

In addition, the data provided by the NIHE in relation to PV Installations on their housing stock shows that 70% of its installations are concentrated in the first and second most disadvantaged quintiles (Figure 13).

Figure 13 NIHE PV Installations Per Census Small Area Multiple Deprivation Measure

When the OFGEM data for the total number of PV Installations is examined at SOA level, the discrepancies between the SA data and the SOA data becomes apparent. The first quintile in the SA data shows significantly lower PV representation than the SOA data. Table 5 and Figure 14 below illustrate the distribution of the total number (22,083) PV system installations in the province across the MDM quintiles.

Table 5 PV installations and SOA MDM Ranking

SOA MDM Ranking	Nos PV	Mean Nos PV by SOA	% by Quintile
1-179 Most Disadvantaged	3432	19	15.5
180-357	4744	28	21.5
358-534	5383	30	24.4
535-712	5205	29	23.6
713-890 Least Disadvantaged	3319	19	15.0
Total	22083		100.0

When the 19,644 PV installations of a system size of 6.5 Kilowatts or less (assessed as residential) are examined, the results are in line with the total PV distribution. Again, the analysis shows the third and fourth quintiles to have the highest proportion of PV installations.

SOA MDM Ranking		Nos Res PV	Mean by SOA	Percentage by Quintile
1-179	Most Disadvantaged	2969	16.6	15.1
180-357		4180	23.5	21.3
358-534		4822	27.2	24.5
535-712		4676	26.3	23.8
713-890	Least Disadvantaged	2997	16.8	15.3
		19644		100.0

Table 6 PV distribution with SOA MDM Ranking

The residential PV installations broadly follow a Gaussian distribution curve across the MDM rankings, with the number of PV installations in the first and fifth quintiles being symmetrical.

Figure 15 Residential PV by SOA MDM Quintiles

Figure 16 illustrates the distribution of residential PV installations by SOA across the Belfast Metropolitan Area overlaid on top of the NISRA MDM data. As can be seen there is a concentration of SOAs either with no PV or 10 or less PV installations within the most disadvantaged areas of Belfast. Those SOAs with higher numbers of PV installations tend to be in the surrounding rural areas.

Figure 16 PV installations by SOA across the BMA

2.3.2 The Relationship between the Distribution of PV Installations and Income

The MDM Income domain was isolated for specific analysis to determine the number of PV installations by Income quintiles. The results below exhibit a fairly even distribution of PV installations (Table 7) between the first four quintiles with only the fifth quintile having a markedly lower number of installations. The analysis highlights the lower prevalence of PV installations within the highest Income quintile (Figure 17).

SOA Income Ranking		Nos Res PV	Mean by SOA	Percentage by Quintile
1-179	Most Disadvantaged	4330	24.2	22.0
180-357		4514	25.4	23.0
358-534		4029	22.8	20.5
535-712		3972	22.3	20.2
713-890	Least Disadvantaged	2799	15.7	14.2
		19644		100.0

Table 7 PV distribution and MDM Income Ranking

Figure 17 PV distribution and MDM Income Ranking

2.3.3 The Relationship between the Distribution of PV Installations and Educational Attainment

The MDM Education domain was isolated for specific analysis to determine the number of PV installation by Educational attainment quintiles. The results below show a that the prevalence of PV installations is highest amongst the third and four quintiles, with the first quintile having a markedly lower number of installations. As evidenced in Table 9 and Figure 18, the lower prevalence of PV installations falls within the quintile with the lowest Educational attainment.

Table 9 PV installations by SOA Ed	ducation Deprivation Ranking
------------------------------------	------------------------------

SOA Education Ranking		Nos Res PV	Mean by SOA	% by Quintile
1-179	Most Disadvantaged	2,288	12.8	11.6
180-357		3,059	17.2	15.6
358-534		4,787	27	24.4
535-712		5,526	31	28.1
713-890	Least Disadvantaged	3,984	22.4	20.3
Total		19,644		100.0

Figure 18 Residential PV installations by SOA Education Domain Quintiles

2.3.4 The Relationship between the Distribution of PV Installations and Housing Tenure

Data on the type of tenure, Owner Occupied, Social and Private Rented by SOA was obtained from NISRA and joined to the PV by SOA data set. Each type of tenure (Owner Occupied, Social and Private Rented) was sorted by percentage quintile bands by SOA and the prevalence PV installations obtained for each tenure type and percentage band (Table 10).

Percentage Tenure by	Owner Occupied Nos	Social Rented Nos	Private Rented Nos
SOA	PV	PV	PV
80-100%	8277		
60-79%	7925	161	12
40-59%	2608	861	15
20-39%	815	1900	2677
1-19%	19	16722	16940
Total	19644	19644	19644

Table 10 Tenure composition by SOA

The results indicate that PV installations are concentrated in those SOAs with the highest percentages of Owner-Occupied households. Conversely those SOAs with the highest percentages of Social and especially Private Rented households have relatively few PV installations (Figure 19).

Figure 19 PV Installations and MDM tenure

3.0 Assessing the Potential Rooftop Generation of Residential PV in Northern Ireland

Undertaking this assessment utilised a combination of GIS analysis, PV GIS system generation locational capacity information, PV panel sizes and assumptions on roof availability and pitch.

3.1 PV Potential Assessment Methodology Components

- a) OSNI BaseMap data provided information on the area (footprint m²) of residential buildings in the province.
- b) OSNI Local Government District (LGD) Boundaries GIS data
- c) European Commission, PV GIS Performance of Grid Connected

 (<u>https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP</u>) Yearly PV energy production web tool
- d) Appraisal of the Factors limiting rooftop generation
- e) Assumptions on both the percentage of properties with pitched roofs and the angle of the pitch.
- f) Details of PV Panel sizes.
- g) Orientation of Residential Building Polygons GIS Plugins.

3.2 Spatial Analysis Methodologies

The analysis of the data was carried out using Geographical Information Software (GIS), with three different programs used: QGIS 3.4.15, Arcview 3.3 and ArcGIS 10.4.1. The three different programs were applied as each has a slightly different range of functions. This also facilitated comparisons to be made enabling the checking of results between the software packages.

The latest edition of Ordinance Survey for Northern Ireland (OSNI) BaseMap (2020) was obtained. BaseMap contains the vector data on all buildings in the province providing details of the "footprint" area of each dwelling in square metres and classifies the buildings as domestic, commercial, education, recreation use etc. (Figure 20). The Domestic building polygons were isolated from the BaseMap resulting in a dataset with a total of 825,351 residential polygons. This data was examined and small "sliver" polygons and small single feature dwelling house polygons of less than 12m² purged from the database. This process left a total of 821,250 domestic dwelling polygons in the database. This data was subsequently joined with the LGD boundaries and a spatial dissolve carried out to determine the number of dwelling (house) polygons and their area in square metres determined within each Local Council.

In addition to the domestic building polygons for dwellings, a BaseMap polygon description of "Other Buildings General" was also appraised, as this contains information on domestic garages. However, in addition to domestic garages, this category also includes agricultural buildings, large sheds and outhouses. Therefore, a size limit had to be determined that would include domestic garages but would exclude these large non-residential "Other Buildings". An examination of residential areas with garages was undertaken using GIS and it was determined that having an upper limit area of 75m² would capture almost all domestic garages but would exclude the non-residential sheds. Similarly, those buildings that were too small to accommodate a rooftop PV installation had to be identified. It was decided that roofs with an area of less that 12m² would be excluded as this was the minimum size estimated to be the capable of accommodating a 1Kw PV installation.

There are 608,248 polygons in the BaseMap "General Buildings" database. These were examined by area and the polygons with areas of between $12m^2$ and $75m^2$ were selected. Polygons comprising only one feature i.e. not a split polygon and with areas less than $12m^2$ were deleted from the data base. This filtering process reduced the number of "General Building" polygons to 426,857 for analysis. The selected garage polygons were then joined with the LGD boundaries database to determine the number of these buildings within each Local Government District. Figure 21 also provides an example of the buildings selected by this data filtering process.

Figure 20 BaseMap Building Types and Analysis Selection Criteria

Figure 21 Buildings Selected for Analysis

3.3 Determining Proportion of Rooftop PV Installation Availability

Several factors limit the area of roofs that can be utilized for PV installations. These include the orientation of the roof, with South and West facing roofs being most favourable in the northern hemisphere; the design of the roof in terms of whether it is flat or pitched, together with the presence of roof lights or dormer windows which would restrict accommodating PV panels; the extent of shading of the roof by adjacent buildings and trees is also important factor limiting PV potential. Research undertaken by (Wiginton et al, 2010:352) examined the fraction of available roof area for PV installation across a range of determination methods and countries. Their results indicated that the fraction of roofs available for PV ranges from 0.22 to 0.95 with an average of 0.47^2 . Based on the Wiginton et al. (2010) research it was decided to run the Northern Ireland rooftop availability analysis of the BaseMap polygons based on seven fractions (0.22, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.47) to provide a range of outputs from conservative to generous estimations of rooftop availability.

In relation to domestic properties in Northern Ireland, there is some information available on limiting factors. The 2016 House Condition Survey "estimated that 747,700 (96%) dwellings had lofts", (NIHE, 2016:79). If the dwellings have a loft, this can only be accommodated via the presence of a pitched roof. If roofs have a pitch this in turn denotes that only half of the roof area will be orientated to the south or west, the more favourable directions for PV Installations. Thus, the rooftop pitch and related orientation factor produce a reduction of 0.5

² See: Wiginton, L. K., Nguyen, H. T., & Pearce, J. M. (2010). Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. *Computers, Environment and Urban Systems, 34*(4), 345-357.

in roof PV availability. As the fraction of residential roofs in the province with a pitch is 96%, for the purpose of this analysis an assumption has been made that for all residential roofs PV availability is going to be 0.5 or below. This assumption is necessary, as it is not possible from the BaseMap databases to determine which dwellings or garages have pitched or flat roofs.

A further assumption is also required on the roof pitch as the area of a pitched roof will be greater than the area of the footprint of the building. In the UK a roof pitch between 25 degrees and 47.5 degrees would be considered conventional³. For the purpose of this study, a roof pitch of 35 degrees was selected as typical. Using a calculation of Cosine 35 degrees, this produced a multiplication factor of 1.2 for the building footprint area to roof area. Consequently, the dwelling polygon areas were multiplied by 1.2 to take account of this in the methodology.

3.4 Typical Solar Panel Size, Area and Output.

A figure had to be determined of a representative area and power output for individual solar panels. A review of PV solar panels by Which UK, which involved asking 1,978 solar PV owners about their systems, produced a ranking of the best rated manufacturer PV brands. The websites of the top 8 of these were appraised and details of panel dimensions and outputs noted (Table 11).

Solar Panel	Width (m)	Height (m)	Power Wp	Area m2
Suntech	1.66	0.99	250	1.64
Sanyo	1.6	0.86	250	1.38
Invensun	1.63	0.99	250	1.61
Hyundai	1.96	0.99	250	1.94
Canadian Solar	1.64	0.98	250	1.61
Sanyo	1.60	0.86	250	1.38
Panasonic	1.58	0.798	250	1.26
Romag	1.63	0.99	250	1.61
			Average	1.55

Table 11 PV Brands and dimensions

In order to estimate the number of panels that could be accommodated on the dwelling roof areas, an average PV panel size of 1.6 m² and a generating capacity of 250Wp was chosen as being typical of those available currently on the market. This information was added to the dwelling polygon data to establish the number of 1.6 m^2 panels that could be accommodated by the rooftop area and the output capacity of the panels. It should be noted that the generation output of PV panels is increasing, with 300 to 400 watt panels entering the market and projections that within two years 700 watt panels could be available.

³ See: <u>https://dwbgroup.co.uk/how-to-measure-the-pitch-angle-of-your-roof/</u>

3.5 Building Orientation

The orientation of buildings has a considerable impact on the amount of available solar radiation. As Table 12 illustrates, the variability dependant on orientation of solar radiation in kWh/m² falling on the centroid location for Mid-East Antrim Council. While there is only a 5% fall in solar irradiation levels between due South and 45 degrees East or west orientations, at 90 degrees East and West this becomes an 18% drop in levels.

Table 12 orientation of solar radiation in kWh/m2 falling on the centroid location for Mid
East Antrim Council

Location	NE-135	W 90	West 45	South 0	East- 45	NE -90	N -135
Centroid Mid East Antrim Solar Radiation kWh/m2	700.0	853.9	984.3	1030.2	972.4	839.9	692.1

To account for this variation, further spatial analysis was undertaken to determine the orientation relative to North of each of the 821,250 dwelling polygons and 426,858 garage polygons in QGIS around each polygon. This polygon assessment of spatial orientation was also undertaken using ArcMap GIS software. In ArcMap the angle is calculated clockwise with 0 at North, while with the PV GIS modelling tool South is 0. However, as all roofs were assumed to be pitched, and only half of the roof would be used in the PV capacity appraisal, this meant that a roof assessed in ArcMap at angle -20 (North-West) the favourable half of the roof is directly opposed which equals -20 (South-East) in the PV GIS modelling (See below Figure 22). Therefore, the ArcMap orientation figures were inputted directly into the PV GIS modelling tool outputs without further conversion

Figure 22 ArcMap and PVGIS Orientation

This orientation data was added to the dwelling polygon attribute table for each individual polygon and the same process was repeated for the residential garage polygons (Figure 23).

Figure 23 Dwellings with Orientation Details

3.6 Location and Solar Irradiation

The amount of solar radiation varies by location on the earth's surface. To account for this variation within Northern Ireland, the centroid locations for each of the eleven District Council Areas in the province were calculated using GIS and the Latitude and Longitude entered into the EU PV GIS modelling web application (Figure 24).

The variation of yearly energy production for the eleven locations across the province, and at a range of orientation angles was then modelled using the EU PV GIS web tool. The modelling was based on a 4Kw PV system with pitched roof dwelling at an angle of 35 degrees and the percentage output from each location and building orientation calculated (See Table 13).

Figure 24 Northern Ireland LGD Centroids

Table 13 PV GIS Yearly PV Output from a 4 kWh PV System by Northern Ireland LGD

Local Government District (LGD)	West 90	SW 45	South 0	SE - 45	East - 90
Antrim and Newtownabbey	2746.9	3233.8	3424.2	3231.7	2748.6
PV GIS % Output of 4Kw System	68.7	80.8	85.6	80.8	68.7
Ards and North Down	2903.1	3476.8	3705.7	3472.5	2897.7
PV GIS % Output of 4Kw System	72.6	86.9	92.6	86.8	72.4
Armagh City Banbridge and	2796 1	3321 4	3540 9	3344 8	2828.8
Craigavon	2730.1	5521.4		5544.0	2020.0
PV GIS % Output of 4Kw System	69.9	83.0	88.5	83.6	70.7
Belfast	2811.4	3344.1	3562.5	3357.1	2832.5
PV GIS % Output of 4Kw System	70.3	83.6	89.1	83.9	70.8
Causeway Coast and Glens	2648.4	3110.4	3294.3	3113.1	2654.0
PV GIS % Output of 4Kw System	66.2	77.8	82.4	77.8	66.3
Derry City and Strabane	2570.9	2999.6	3169.7	3004.5	2588.9
PV GIS % Output of 4Kw System	64.3	75.0	79.2	75.1	64.7
Fermanagh and Omagh	2658.6	3114.1	3300.4	3125.2	2678.7
PV GIS % Output of 4Kw System	66.5	77.9	82.5	78.1	67.0
Lisburn and Castlereagh	2773.2	3287.7	3502.4	3309.9	2803.2
PV GIS % Output of 4Kw System	69.3	82.2	87.6	82.7	70.1
Mid and East Antrim	2745.2	3213.2	3380.5	3178.5	2705.8
PV GIS % Output of 4Kw System	68.6	80.3	84.5	79.5	67.6
Mid Ulster	2737.4	3236.8	3445.9	3259.1	2771.9
PV GIS % Output of 4Kw System	68.4	80.9	86.1	81.5	69.3
Newry Mourne and Down	2750.9	3213.2	3393.4	3208.1	2746.3
PV GIS % Output of 4Kw System	68.8	80.3	84.8	80.2	68.7

Each centroid location had five orientations assessed at 45-degree intervals on the compass as displayed in Table 14. In broad terms, mostly related to climatic variables, the further east the location in the province the more sunshine hours available. Ards and North Down Council area has the highest solar output for a given PV installation while Derry and Strabane Council area has the lowest. The PV output PV system percentages were integrated into the dwelling polygon data using the following graduated intervals by multiplying the roof area potential generation kilowatts figure for each building by the modelled output reduction factor for each LGD centroid from the PV GIS webtool tool. This produced a result indicating annual PV capacity in Kilowatts at the eleven centroid locations which were then adjusted for a range of roof top availability percentages of 22% to 47%.

LGD	W 90 +	West 45 to 89	SW 44	South 0	SE -44	East- 45 to - 89	E -90 +
Antrim and Newtownabbey	68.7	80.8	85.6	85.6	85.6	80.8	68.7
Ards and North Down	72.5	86.9	92.6	92.6	92.6	86.8	72.4
Armagh City Banbridge and Craigavon	69.9	83.0	88.5	88.5	88.5	83.6	70.7
Belfast	70.3	83.6	89.1	89.1	89.1	83.9	70.8
Causeway Coast and Glens	66.2	77.8	82.4	82.4	82.4	77.8	66.3
Derry City and Strabane	64.3	75.0	79.2	79.2	79.2	75.1	64.7
Fermanagh and Omagh	66.5	77.9	82.5	82.5	82.5	78.1	67.0
Lisburn and Castlereagh	69.3	82.2	87.6	87.6	87.6	82.7	70.1
Mid and East Antrim	68.6	80.3	84.5	84.5	84.5	79.5	67.6
Mid Ulster	68.4	80.9	86.1	86.1	86.1	81.5	69.3
Newry Mourne and Down	68.8	80.3	84.8	84.8	84.8	80.2	68.7

Table 14 PV GIS Percentage System of Rated Outputs at 45 Degree Interval Orientations

4.0 Potential PV Rooftop Generation Results

The potential for Domestic rooftop PV generation in the province was calculated using the following factors and assumptions.

- a) The total footprint area in m² of Dwellings and Garages by LGD in the province
- b) Assumed that 100% of roofs are pitched
- c) An assumed roof pitch of 35 degrees giving a multiplication adjustment factor of 1.2.
- d) PV roof availability in a range of 22% to 47%
- e) A PV panel size of 1.6m²
- f) A PV panel generating capacity of 250 Wp
- g) PV annual system generation output percentage based on solar irradiance levels at LGD centroids and orientation of individual polygons in a range of + or - 90 degrees of due south.

The GIS analysis of the OSNI BaseMap 2020 data determined that there were 821,250 dwelling polygons in the province and 426,857 domestic buildings/garages polygons in the

size range $12m^2$ to $75m^2$. The total number of building polygons analysed was 1,248,107 and the area of the dwellings was 67,289,866 m² and the total area of the garages was 13,115,428m². The mean dwelling rooftop size was 81.9 m² and the median size was 63.2m², while mean garage rooftop size was 30.7 m² and the median size was 25.7m². The spatial analysis of dwellings by Local Government District produced the following distribution with Belfast City Council having both the largest number of dwellings 146,176 and marginally the largest dwelling footprint area of 8,207,131m².

Table 15 Area by dwelling polygons across LGDs

LGD NAME	Nos Dwelling Polygons	Area Dwelling Polygons m ²
Antrim and Newtownabbey	62,828	4,857922
Ards and North Down	74,828	6,128598
Armagh City Banbridge and Craigavon	92,240	8,035270
Belfast	145,411	8,207131
Causeway Coast and Glens	68,171	6,271116
Derry City and Strabane	64,203	4,815268
Fermanagh and Omagh	52,506	5,310441
Lisburn and Castlereagh	62,884	5,144128
Mid and East Antrim	63,152	5,107696
Mid Ulster	60,033	6,038553
Newry Mourne and Down	74,994	7,373743
Total	821,250	67,289,866

Figure 25 Dwelling Polygons by LGD

This "raw" polygon data was used to calculate the generation potential (Table 16) using the factors listed in points c) to g) above.

Local Government District	100% Dwelling Roof Availability MWh	22% Availability MWh	35% Availability MWh	47% Availability MWh
Antrim and Newtownabbey	756260	166377	264691	355442
Ards and North Down	1028678	226309	360037	483479
Armagh City Banbridge and Craigavon	1289920	283782.4	451472	606262
Belfast	1325481	291605.8	463918.4	622976
Causeway Coast and Glens	939930	206784.6	328975.5	441767
Derry City and Strabane	695455	153000.1	243409.3	326864
Fermanagh and Omagh	798311	175628.4	279408.9	375206
Lisburn and Castlereagh	833995	183478.9	291898.3	391978
Mid and East Antrim	786177	172958.9	275162	369503
Mid Ulster	943131	207488.8	330095.9	443272
Newry Mourne and Down	1138320	250430.4	398412	535010
Total	10535658	2317845	3687480	4951759

Table 16 Results Dwellings PV Annual Generation Potential MWh

Figure 26 Potential Dwelling Rooftop Generation GWh at 35% Roof Availability

Table 17 Results Domestic Garages

LGD NAME	Nos Garage Polygons 12 to 75m ²	Area of Garages m ²
Antrim and Newtownabbey	26468	747444
Ards and North Down	31052	788493
Armagh City Banbridge and Craigavon	54903	1725884
Belfast	36862	647173
Causeway Coast and Glens	40902	1331259
Derry City and Strabane	26790	770628
Fermanagh and Omagh	50288	1848869
Lisburn and Castlereagh	29865	835728
Mid and East Antrim	33223	1041697
Mid Ulster	45699	1667751
Newry Mourne and Down	50805	1710502
Total	426857	13,115,428

This "raw" polygon data was used to calculate the generation potential (see Table 18) using the factors listed in points c) to g) above.

Local Coucernment District	100% Garage Roof Availability	22% Availability	35% Availability	47% Availability
Local Government District	Gwn	Gwn	Gwn	Gwn
Antrim and Newtownabbey	116	26	41	55
Ards and North Down	132	29	46	62
Armagh City Banbridge and		61	97	130
Craigavon	277	01	57	150
Belfast	105	23	37	49
Causeway Coast and Glens	200	44	70	94
Derry City and Strabane	111	2	4	5
Fermanagh and Omagh	278	61	97	131
Lisburn and Castlereagh	133	29	47	62
Mid and East Antrim	160	35	56	75
Mid Ulster	261	57	91	123
Newry Mourne and Down	264	58	93	124
Total	2037	426	678	911

Table 18 Garage Roof top Total Potential at Percentage Availability Ranges

Figure 27 Potential Garage Rooftop Generation GWh at 35% Roof Availability

Table 19 Results Dwelling Garage Roof Top PV Generation Potential MWh 100% Roof Availability

Local Government District	Dwellings Roof Capacity MWh	Garage Roof Capacity MWh	Dwellings and Garage Roof MWh	Dwellings and Garage Roof MWh
	756		872679	873
Antrim and Newtownabbey	260	116419	072075	075
Ards and North Down	1028678	132483	1161161	1161
Armagh City Banbridge and Craigavon	1289920	277090	1567010	1567
Belfast	1325481	104617	1430098	1430
Causeway Coast and Glens	939930	199645	1139575	1140
Derry City and Strabane	695455	111272	806727	807
Fermanagh and Omagh	798311	277678	1075989	1076
Lisburn and Castlereagh	833995	132962	966957	967
Mid and East Antrim	786177	160463	946640	947
Mid Ulster	943131	260952	1204083	1204
Newry Mourne and Down	1138320	264321	1402641	1403
Total	10,535,658	2,037,902	12,573,560	12574

The results for the 35% rooftop availability for dwellings and domestic garages indicate that a potential annual generation of 4401GWh could be achieved. Figure 28 indicates the distribution of generation by LGD in the province. As can been seen Belfast City Council and Armagh, Banbridge and Craigavon Council have the highest potential PV rooftop generating capacity in the province.

Local Government District	100% Dwelling and Garage Roof Availability GWh	22% Roof Availability GWh	35% Roof Availability GWh	47% Roof Availability GWh
Antrim and Newtownabbey	873	192	305	410
Ards and North Down	1161	255	406	546
Armagh City Banbridge and Craigavon	1567	345	548	736
Belfast	1430	315	501	672
Causeway Coast and Glens	1140	251	399	536
Derry City and Strabane	807	177	282	379
Fermanagh and Omagh	1076	237	377	506
Lisburn and Castlereagh	967	213	338	454
Mid and East Antrim	947	208	331	445
Mid Ulster	1204	265	421	566
Newry Mourne and Down	1403	309	491	659
Total	12574	2766	4401	5910

Tabla 20	Duvalling and	Caraga Cara	wation Datantia	Deefter	A.,	Dereentee	~ ~
Table zu) Dweiling and	Garage Gene	eration Potentia	ι κοσιιόρ /	Avanability	Percentage	25

Figure 28 Total Annual Residential Generation GWh Potential @35% Roof Availability by LGD

Figure 29 below provides a monthly breakdown of the potential electricity generation for residential rooftop PV at 35% rooftop availability.

Figure 29 Monthly Breakdown of Generation Potential using 35% Rooftop availability 4401 GWh based on the NI Centroid Location for Solar Irradiation.

5.0 Case Study PV Installation Generation and Usage

Exploratory research on a small number of case study households has been undertaken to determine PV System Generation Outputs in kWh, the Seasonal and Monthly variation of outputs and the extent to which household electricity generated from PV is exported to the electricity grid with aim of assessing residential PV potential generation in N. Ireland.

Six case study households have been participating in the research for two years and it is intended to expand the number of households to twenty in the near future. The six households have provided details of their PV system size in Kilowatts, whether they had PV water heating (Solar Plus enhancement) and the orientation of the PV system. The Case Study households' details are listed below. (Table 21)

Study Nos	Case Study Household	PV System Size kWp	Nos Panels	Orientation	PV Water Heating
1	IS	2.0	8	South East	No
2	СМ	3.25	13		No
3	CL	4.0	16	South East/South West	Yes
4	JB	4.0	16	South East/ South West	Yes
5	DW	4.0	16	South	No
6	SM	5.28	22	South East	Yes

Table 21 Case study households

5.1 Household PV Impacts on Energy Imported from the Electricity Network.

The study entailed a comparison pre and post PV installation household electricity usage and the amount of electricity diverted to solar water heating by the collection of monthly readings from the solar water heaters.

In relation to the impact of PV installations on the kWh of electricity imported from the electricity network the results in Table 22 indicate that PV generation reduced electricity consumption from the grid by approximately 32% in three households compared to pre installation levels. The results from the four household where this data was available indicates an average reduction of electricity consumption of 26%. While this represents a very small sample, the results are in line with findings of McKenna et al. (2018:448) which concluded that PV installations produced a "reduction of the average UK household's annual electricity demand of 24%" and Schopfer et al. (2018:241) a 29% reduction. It is interesting to note that none of the households had undertaken a pre and post installation of electricity consumption assessment prior to engaging with the study.

	SM	SM % Post	Cl	CL % Post	DW	DW %	IS Electricity	IS % Post	BM
	Usage	Reduction	Usage	Reduction	Usage	Reduction	Usage	Reduction	Usage
	KwH		KwH		KwH		KwH		KwH
Pre Solar	5900		5294		3300		3025		
PV									
Post PV	3689	37.5	3959	25.2	2345	28.9			
2015									
Post PV	3608	38.8	4356	17.7	2216	32.8			
2016									
Post PV	4127	30.1			2360	28.5			
2017									
Post PV	4459	24.4			2359	28.5			
2018									
Post PV					1981	40.0			
2019									
Post PV	4683	20.6	6448	-21.8	2245	32.0	2007	33.7	
2020									
Average		30.3		7.0		31.8		33.7	
%									

Table 22 impact of PV installations on the kWh of electricity imported from the electricity network

There is evidence of energy use rebound in two of the household with electricity consumption increasing after an initial drop.

5.2 Solar Plus Technologies: PV Solar Water Heaters

O'Shaughnessy et al. (2018:11) discuss the concept of residential "Solar Plus" which they describe as "the combination of PV, energy storage, and load control providing an integrated approach to PV deployment". One aspect of this approach is the use of solar PV "to divert the surplus solar photovoltaic energy generated in the home to heat the water in the household hot water storage tank" (Marlec UK accessed 01/04/2021). This is achieved by the installation of devices such as either a Solar iBoost or Immersun.

These devices monitor household PV electricity generation and once generation exceeds usage in the dwelling, they automatically switch on the immersion hot water heater, in order that the excess electricity is used within the home, rather than being exported to the grid. PV water heaters cost approximately £300.

5.3 Assessing the Impact of PV Water Heaters on Household Electricity Usage

This research has gathered details of PV electricity generation and electricity exported to the network from 6 case study households. As can be seen in Figure 29 below those households with solar water heating installed had an average electricity export figure of 20.8% in 2020 while those with no PV water heating installed had an average export percentage of 73.1%. As an example, one case study household in 2020 diverted 1438 kWh of PV electricity generation to water heating.

One litre of kerosene (central heating oil) is equivalent to 10.4 kWh hours of electricity so in this instance 138 litres of oil were saved (£54, Sept 2021 Prices) and the household benefitted from hot water. The technology does rely on dwellings having a hot water tank being fitted so that the water can be stored.

In addition PV solar water heaters can provide a worthwhile proportion of household hot water need in the months between March and September, 3.5kWh will heat 100 litres of water by 30^o C. The graph below illustrates hot water generation in a case study household (Figure 31 overleaf).

Figure 31 Case Study Household PV and Hot Water Generation

Information was also obtained from PowerNI detailing high level electricity generation figures from PV systems registered with the organisation. Power NI has 9,700 PV stations registered with it, 8,600 of which have an installed capacity of 6.5Kw or less, likely to be residential. The total Installed Capacity of the 9,700 PV systems is 64MW and the 8,600 <6.5 Kw systems have an installed capacity of 38MW. Table 23 below indicates the total and exported to the PV generation.

Table 23 total and exported to the PV generation

Year	Installed Capacity MWh	Generation Total MWh	Exported to Network MWh	
2020	64	43.6	13.4	
2019	64	44.1	13.4	

The <6.5Kw systems at 38MW equals 59% of generating capacity. Using this percentage 59% of total generation (44MW) is 26 MW and 13.4MW or 52% of this total is exported to the electricity network. The PowerNI data does not distinguish between those PV systems that have Solar + technologies fitted and those that do not, but the data does provide an PV generation export figure of 52% of from a large sample which is a useful comparator. It therefore provides an indication of the impact that PV solar Water heaters have on PV household electricity exports i.e. households using the technology export around 20% of generation and those that do not export well in excess of 50% of generation.

6.0 Findings and Conclusions

6.1 Solar PV Installation Numbers

The number of PV installations in the province is just over 22,000 (19,680 less than 6.5 Kw indicating likely residential), this figure equates to approximately 2.5% of the housing stock having Solar PV installed. The number of PV installations appears to have remained relatively

constant since 2018. PV installations in the province rose steadily between 2013 and 2016, encouraged by the incentive provided by the Renewables Obligation scheme for small scale renewable generation. There were peaks in the number of PV installations in 2014, 2015 and 2016, coinciding with the staged reduction in the payments by the ROC scheme, with applicants attempting to avail of the scheme before the rate cuts were implemented. The ending of the ROCs schemes has reduced new PV installations to very low numbers annually. It is apparent that the uptake of residential PV is highly reliant on some form of financial incentive scheme.

Technology	2014	2015	2016	2017			
Solar PV (up to 50Kw)	4 ROCs	3 ROCs	2 ROCs	ROCs end			

Table 25 ROCs schemes per annum

6.2 PV Installations Locations

The results from the analysis of both the OFGEM and NIEN PV data sets indicates that approximately 66% of PV installations in the province are located outside settlement development limits in rural areas. There is also a marked difference in installation rates between Local Authorities in the Greater Belfast Area than the remainder of the province. This poses the questions as to why rural communities adopted PV technology in greater numbers than urban? What factors prompted the differential adoption of PV and why was the adoption much less prevalent in urban areas and the Greater Belfast Area with the same incentive scheme operating across Northern Ireland?

6.3 PV Impacts on household Electricity Consumption

Research from a small number of local case study households and supported by other cited literature indicates that households with PV installed typically have a reduction of 30% in electricity imported from the grid compared to pre-install electricity import consumption.

6.4 Water Heating from PV

Households which have "Solar Plus" devices such as PV water heaters (costing £300) benefit from a worthwhile proportion of their hot water needs being met by their PV systems between the months of March and September. In addition, these households export approximately 20% of generation to the grid while those with no water heaters export approximately 70%.

6.5 Characteristics of Current Solar PV Households

This research set out to characterise households that have installed solar PV systems in their homes in Northern Ireland. The results indicate that PV adopters to date are households that are owner occupiers from rural, less densely populated areas and that higher levels of income, employment and education have a positive effect on PV adoption. It is therefore axiomatic that the converse is also case in that those households in rented (especially private rented) accommodation, exhibiting lower levels of income, employment and education, located in urban areas are least likely to have installed solar PV systems.

6.6 The Potential for Residential PV Generation in N. Ireland

There are 821,250 dwelling and 4,26858 domestic garage building polygons in the province in the OSNI database with a rooftop area of 67,289,866m² (dwellings) and 13,115,428m² (garages) totalling 80,405,294m² (80.4 Km²) of residential roof area.

The following assumptions were used in the calculation of the residential PV rooftop potential.

i all roofs are pitched with an angle of 35 degrees,
 ii only domestic garages with areas of between 12m² and 75m² were included
 iii PV panels have an area of 1.6m² and
 iv PV panels have an output of 250 watts.

Using a rooftop availability figure of 35% for PV the assessed residential (dwellings and garages) potential annual generation for the province is 4401 GWh. In 2016-17 residential electricity consumption in Northern Ireland was 2907 GWh with a monthly average consumption of 242 GWh. Rooftop Domestic Solar PV has the potential to generate significantly in excess of this demand on an annual basis and exceeds monthly demand in the months March to October.

6.7 Conclusion

Even in the comparatively overcast skies of Northern Ireland residential Solar PV installations with solar water heating, can provide 30% of household annual electricity consumption and make a worthwhile contribution to household hot water requirements between the months of March and September. The previous ROCs incentive scheme encouraged the uptake of the technology but the schemes closure in 2017 halted new installations and currently approximately only 2.5% of households make use of PV technology in the province. Furthermore, the ROCs scheme was clearly an attractive proposition to particular sections of the community, but this research has established that as a policy driver its success was far from spatially uniform, with urban areas in particular not availing of the initiative.

Solar PV is a mature technology and it has the potential to make a very significant contribution to household energy needs, reducing fuel poverty and meeting the goal of net carbon zero. However, as this research has established in the absence of financial incentives to households Solar PV is unlikely to be widely adopted within the residential sector.

Policy note:

The OFGEM data utilised in this research was provided at SOA level. Results of a detailed statistical analysis indicate that probably factors such as neighbourhood peer clusters have encouraged PV adoption and that it is more commonly installed in detached houses.

However, it is not possible to attach a degree of certainty to these findings using SOA level data, further analysis using full address data, if it became available, would provide additional confidence on factors such as clustering and house type.

References

- 1. Committee on Climate Change, Net Zero the UK's contribution to stopping Global Warming, May 2019, P.23 <u>https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-</u> <u>contribution-to-stopping-global-warming.pdf</u>
- 2. Department for the Economy, Energy in Northern Ireland 2020, P39
- 3. European Commission, PV GIS Performance of Grid Connected (https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP
- 4. <u>How to measure the pitch of your roof | DWB Group</u> accessed 05/05/21
- 5. Marlec UK Solar iBoost + Brochure <u>https://www.marlec.co.uk/wp-content/uploads/2016/02/Solar-iBoost-</u> <u>Brochure-v3-A4-3pg.pdf</u>
- 6. McKenna E, Pless J, and Darby S, Solar photovoltaic self-consumption in the UK residential sector: new estimates from a smart grid demonstration project, Energy Policy Volume 118 July 2018, P488.
- 7. O'Shaughnessy E, Cutlera D, Ardania K, Margolisa R, Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings, Applied Energy, 2018, P11
- Schopfera S, Tiefenbecka V, Staakeb T, Economic assessment of photovoltaic battery systems based on household load profiles, Applied Energy Volume 223, August 2018, P241
- 9. Tyagi V. et al. / Renewable and Sustainable Energy Reviews 20 (2013) 443–461461
- 10. Wiginton H, Nguyen H, Pearce J, Quantifying rooftop solar photovoltaic potential for Regional Renewable Energy Policy, Computers, Environment and Urban Systems, Department of Mechanical and Materials Engineering, Queen's University, Canada K7L 3N6, 2010, P352