421 research outputs found

    Stability Analysis of Superconducting Electroweak Vortices

    Full text link
    We carry out a detailed stability analysis of the superconducting vortex solutions in the Weinberg-Salam theory described in Nucl.Phys. B826 (2010) 174. These vortices are characterized by constant electric current II and electric charge density I0I_0, for I→0{I}\to 0 they reduce to Z strings. We consider the generic field fluctuations around the vortex and apply the functional Jacobi criterion to detect the negative modes in the fluctuation operator spectrum. We find such modes and determine their dispersion relation, they turn out to be of two different types, according to their spatial behavior. There are non-periodic in space negative modes, which can contribute to the instability of infinitely long vortices, but they can be eliminated by imposing the periodic boundary conditions along the vortex. There are also periodic negative modes, but their wavelength is always larger than a certain minimal value, so that they cannot be accommodated by the short vortex segments. However, even for the latter there remains one negative mode responsible for the homogeneous expansion instability. This mode may probably be eliminated when the vortex segment is bent into a loop. This suggests that small vortex loops balanced against contraction by the centrifugal force could perhaps be stable.Comment: 42 pages, 11 figure

    CMB anisotropy predictions for a model of double inflation

    Full text link
    We consider a double-inflationary model with two massive scalar fields interacting only gravitationally in the context of a flat cold dark matter (CDM) Universe. The cosmic microwave background (CMB) temperature anisotropies produced in this theory are investigated in great details for a window of parameters where the density fluctuation power spectrum P(k) is in good agreement with observations. The first Doppler (``acoustic'') peak is a crucial test for this model as well as for other models. For the ``standard'' values of the cosmological parameters of CDM, our model is excluded if the height of the Doppler peak is sensibly higher than about three times the Sachs-Wolfe plateau.Comment: 12 pages LaTeX using revtex, to be published in Phys. Rev.

    Interacting fermions in self-similar potentials

    Full text link
    We consider interacting spinless fermions in one dimension embedded in self-similar quasiperiodic potentials. We examine generalizations of the Fibonacci potential known as precious mean potentials. Using a bosonization technique and a renormalization group analysis, we study the low-energy physics of the system. We show that it undergoes a metal-insulator transition for any filling factor, with a critical interaction that strongly depends on the position of the Fermi level in the Fourier spectrum of the potential. For some positions of the Fermi level the metal-insulator transition occurs at the non interacting point. The repulsive side is an insulator with a gapped spectrum whereas in the attractive side the spectrum is gapless and the properties of the system are described by a Luttinger liquid. We compute the transport properties and give the characteristic exponents associated to the frequency and temperature dependence of the conductivity.Comment: 18 pages, 10 EPS figure

    An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude

    Get PDF
    Low-affinity ligands can be efficiently optimized into high-affinity drug leads by structure based drug design when atomic-resolution structural information on the protein/ligand complexes is available. In this work we show that the use of a few, easily obtainable, experimental restraints improves the accuracy of the docking experiments by two orders of magnitude. The experimental data are measured in nuclear magnetic resonance spectra and consist of protein-mediated NOEs between two competitively binding ligands. The methodology can be widely applied as the data are readily obtained for low-affinity ligands in the presence of non-labelled receptor at low concentration. The experimental inter-ligand NOEs are efficiently used to filter and rank complex model structures that have been pre-selected by docking protocols. This approach dramatically reduces the degeneracy and inaccuracy of the chosen model in docking experiments, is robust with respect to inaccuracy of the structural model used to represent the free receptor and is suitable for high-throughput docking campaigns

    Superconducting non-Abelian vortices in Weinberg-Salam theory -- electroweak thunderbolts

    Full text link
    We present a detailed analysis of classical solutions in the bosonic sector of the electroweak theory which describe vortices carrying a constant electric current I{\cal I}. These vortices exist for any value of the Higgs boson mass and for any weak mixing angle, and in the zero current limit they reduce to Z strings. Their current is produced by the condensate of vector W bosons and typically it can attain billions of Amperes. For large I{\cal I} the vortices show a compact condensate core of size ∌1/I\sim 1/{\cal I}, embedded into a region of size ∌I\sim{\cal I} where the electroweak gauge symmetry is completely restored, followed by a transition zone where the Higgs field interpolates between the symmetric and broken phases. Outside this zone the fields are the same as for the ordinary electric wire. An asymptotic approximation of the large I{\cal I} solutions suggests that the current can be {arbitrarily} large, due to the scale invariance of the vector boson condensate. Finite vortex segments whose length grows with I{\cal I} seem to be perturbatively stable. This suggests that they can transfer electric charge between different regions of space, similarly to thunderbolts. It is also possible that they can form loops stabilized by the centrifugal force -- electroweak vortons.Comment: 83 pages, 25 figure

    “Dogged” Search of Fresh Nakhla Surfaces Reveals New Alteration Textures

    Get PDF
    Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceCarbonaceous chondrites are considered as amongst the most primitive Solar System samples available. One of their primitive characteristics is their enrichment in volatile elements.This includes hydrogen, which is present in hydrated and hydroxylated minerals. More precisely, the mineralogy is expected to be dominated by phyllosilicates in the case of CM chondrites, and by Montmorillonite type clays in the case of CI. Here, in order to characterize and quantify the abundance of lowtemperature minerals in carbonaceous chondrites, we performed thermogravimetric analysis of matrix fragments of Tagish Lake, Murchison and Orgueil

    Random Convex Hulls and Extreme Value Statistics

    Full text link
    In this paper we study the statistical properties of convex hulls of NN random points in a plane chosen according to a given distribution. The points may be chosen independently or they may be correlated. After a non-exhaustive survey of the somewhat sporadic literature and diverse methods used in the random convex hull problem, we present a unifying approach, based on the notion of support function of a closed curve and the associated Cauchy's formulae, that allows us to compute exactly the mean perimeter and the mean area enclosed by the convex polygon both in case of independent as well as correlated points. Our method demonstrates a beautiful link between the random convex hull problem and the subject of extreme value statistics. As an example of correlated points, we study here in detail the case when the points represent the vertices of nn independent random walks. In the continuum time limit this reduces to nn independent planar Brownian trajectories for which we compute exactly, for all nn, the mean perimeter and the mean area of their global convex hull. Our results have relevant applications in ecology in estimating the home range of a herd of animals. Some of these results were announced recently in a short communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting

    Mapping recent information behavior research: an analysis of co-authorship and cocitation networks

    Get PDF
    There has been an increase in research published on information behavior in recent years, and this has been accompanied by an increase in its diversity and interaction with other fields, particularly information retrieval (HR). The aims of this study are to determine which researchers have contributed to producing the current body of knowledge on this subject, and to describe its intellectual basis. A bibliometric and network analysis was applied to authorship and co-authorship as well as citation and co-citation. According to these analyses, there is a small number of authors who can be considered to be the most productive and who publish regularly, and a large number of transient ones. Other findings reveal a marked predominance of theoretical works, some examples of qualitative methodology that originate in other areas of social science, and a high incidence of research focused on the user interaction with information retrieval systems and the information behavior of doctors
    • 

    corecore