190 research outputs found
Perturbative two- and three-loop coefficients from large beta Monte Carlo
Perturbative coefficients for Wilson loops and the static quark self-energy
are extracted from Monte Carlo simulations at large beta on finite volumes,
where all the lattice momenta are large. The Monte Carlo results are in
excellent agreement with perturbation theory through second order. New results
for third order coefficients are reported. Twisted boundary conditions are used
to eliminate zero modes and to suppress Z_3 tunneling.Comment: 6 pages, 5 figures. Contributions of Howard Trottier and Paul
Mackenzie to Lattice '9
Charmonium Spectrum from Quenched Anisotropic Lattice QCD
We present a detailed study of the charmonium spectrum using anisotropic
lattice QCD. We first derive a tree-level improved clover quark action on the
anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences
of the improvement coefficients, i.e. the ratio of the hopping parameters
and the clover coefficients , are examined at the tree
level. We then compute the charmonium spectrum in the quenched approximation
employing anisotropic lattices. Simulations are made with
the standard anisotropic gauge action and the anisotropic clover quark action
at four lattice spacings in the range =0.07-0.2 fm. The clover
coefficients are estimated from tree-level tadpole improvement. On
the other hand, for the ratio of the hopping parameters , we adopt both
the tree-level tadpole-improved value and a non-perturbative one. We calculate
the spectrum of S- and P-states and their excitations. The results largely
depend on the scale input even in the continuum limit, showing a quenching
effect. When the lattice spacing is determined from the splitting, the
deviation from the experimental value is estimated to be 30% for the
S-state hyperfine splitting and 20% for the P-state fine structure. Our
results are consistent with previous results at obtained by Chen when
the lattice spacing is determined from the Sommer scale . We also address
the problem with the hyperfine splitting that different choices of the clover
coefficients lead to disagreeing results in the continuum limit.Comment: 43 pages, 49 eps figures, revtex; minor changes, version to appear in
Physical Review
An estimate of the flavour singlet contributions to the hyperfine splitting in charmonium
We explore the splitting between flavour singlet and non-singlet mesons in
charmonium. This has implications for the hyperfine splitting in charmonium
Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD
A detailed study is made of four dimensional SU(2) gauge theory with static
adjoint ``quarks'' in the context of string breaking. A tadpole-improved action
is used to do simulations on lattices with coarse spatial spacings ,
allowing the static potential to be probed at large separations at a
dramatically reduced computational cost. Highly anisotropic lattices are used,
with fine temporal spacings , in order to assess the behavior of the
time-dependent effective potentials. The lattice spacings are determined from
the potentials for quarks in the fundamental representation. Simulations of the
Wilson loop in the adjoint representation are done, and the energies of
magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are
calculated, which set the energy scale for string breaking. Correlators of
gauge-fixed static quark propagators, without a connecting string of spatial
links, are analyzed. Correlation functions of gluelump pairs are also
considered; similar correlators have recently been proposed for observing
string breaking in full QCD and other models. A thorough discussion of the
relevance of Wilson loops over other operators for studies of string breaking
is presented, using the simulation results presented here to support a number
of new arguments.Comment: 22 pages, 14 figure
The Infrared Behaviour of the Pure Yang-Mills Green Functions
We review the infrared properties of the pure Yang-Mills correlators and
discuss recent results concerning the two classes of low-momentum solutions for
them reported in literature; i.e. decoupling and scaling solutions. We will
mainly focuss on the Landau gauge and pay special attention to the results
inferred from the analysis of the Dyson-Schwinger equations of the theory and
from "{\it quenched}" lattice QCD. The results obtained from properly
interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
The Concept of Governance in the Spirit of Capitalism
Through combining insights from political economy and sociology, this article explains the early genesis of the policy notion of governance in relation to ideological changes in capitalism. Such an approach has tended to be neglected in existing conceptual histories, in the process, undermining a sharper politicization of the term and how it became normalized. The argument dissects how the emergence of governance can be understood in light of a relationship between political crises, social critique and justificatory arguments (centered around security and justice claims) that form part of an ideological ‘spirit of capitalism’. Through a distinctive comparison between the creation of ‘corporate governance’ in the 1970s and the formulation of a ‘governance agenda’ by the World Bank from the 1980s, the article elucidates how the concept, within certain policy uses, but by no means all, can reflect and help constitute a neoliberal spirit of capitalism
Tectonic controls on post-subduction granite genesis and emplacement : the late Caledonian suite of Britain and Ireland
Rates of magma emplacement commonly vary as a function of tectonic setting. The late Caledonian granites of Britain and Ireland are associated with closure of the Iapetus Ocean and were emplaced into a varying regime of transpression and transtension throughout the Silurian and into the early Devonian. Here we evaluate a new approach for examining how magma volumes vary as a function of tectonic setting. Available radiometric ages from the late Caledonian granites are used to calculate probability density functions (age spectra), with each pluton weighted by outcrop area as a proxy for its volume. These spectra confirm an absence of magmatic activity during Iapetus subduction between c. 455 Ma and 425 Ma and a dominance of post-subduction magmas between c. 425 Ma and 380 Ma. We review possible reasons why, despite the widespread outcrop of the late Caledonian granites, magmatism appears absent during Iapetus subduction. These include shallow angle subduction or extensive erosion and tectonic removal of the arc.
In contrast to previous work we find no strong difference in the age or major element chemistry of post-subduction granites across all terranes. We propose a common causal mechanism in which the down-going Iapetus oceanic slab peeled back and detached beneath the suture following final Iapetus closure. The lithospheric mantle was delaminated beneath the suture and for about 100 km back beneath the Avalonian margin. While magma generation is largely a function of gravitationally driven lithosphere delamination, strike-slip dominated kinematics in the overlying continental crust is what modulated granitic magma emplacement. Early Devonian (419–404 Ma) transtension permitted large volumes of granite emplacement, whereas the subsequent Acadian (late Early Devonian, 404–394 Ma) transpression reduced and eventually suppressed magma emplacement
Percepções e experiências de participação cidadã de crianças e adolescentes no Rio de Janeiro
- …