9 research outputs found

    Post-combustion CO2 capture from natural gas combined cycles by solvent supported membranes

    Get PDF
    AbstractAmong the CO2 separation technologies, CO2 membranes are currently receiving an increasing interest, largely thanks to the development of solvents such as ionic liquids and deep eutectic solvents, which are suitable for use in solvent supported membrane systems. The aim of this work is to perform a techno-economic analysis of a natural gas-fired combined cycle power plant integrating CO2 membranes. Such a configuration is based on a two-membrane system, the first one separating the CO2 for final sequestration, the second one used to generate a selective CO2-rich flue gas recycle. The techno-economic assessment uses three modelling tools: (i) process modelling of the complete power plant, performed with the in-house GS code and Aspen Plus, (ii) modelling of the membrane, performed with a finite difference method implemented in Matlab and (iii) economic modelling by a bottom-up approach. The final material balances show that using a moderate pressurization of the combined cycle flue gas results in the lowest energy loss and lowest capture cost

    Techno-economic assessment of two novel feeding systems for a dry-feed gasifier in an IGCC plant with Pd-membranes for CO2 capture

    Get PDF
    This study focuses on the application of Pd-based membranes for CO[subscript 2] capture in coal fueled power plants. In particular, membranes are applied to Integrated Gasification Combined Cycle with two innovative feeding systems. In the first feeding system investigated, CO[subscript 2] is used both as fuel carrier and back-flushing gas for the candle filters, while in the second case N[subscript 2] is the fuel carrier, and CO[subscript 2] the back-flushing gas. The latter is investigated because current dry feed technology vents about half of the fuel carrier, which is detrimental for the CO[subscript 2] avoidance in the CO[subscript 2] case. The hydrogen separation is performed in membrane modules arranged in series; consistently with the IGCC plant layout, most of the hydrogen is separated at the pressure required to fuel the gas turbine. Furthermore, about 10% of the overall hydrogen permeated is separated at ambient pressure and used to post-fire the heat recovery steam generator. This layout significantly reduces membrane surface area while keeping low efficiency penalties. The resulting net electric efficiency is higher for both feeding systems, about 39%, compared to 36% of the reference Selexol-based capture plant. The CO[subscript 2] avoidance depends on the type of feeding system adopted, and its amount of vented gas; it ranges from 60% to 98%. From the economic point of view, membrane costs are significant and shares about 20% of the overall plant cost. This leads in the more optimistic case to a CO[subscript 2] avoidance cost of 35 €/t[subscript CO2], which is slightly lower than the reference case.Seventh Framework Programme (European Commission) (Grant agreement no. 241342

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Efficient low CO<sub>2</sub> emissions power generation by mixed conducting membranes

    Get PDF
    AbstractThis papers aims at the performance assessment of large scale, natural gas fired power plants where O2 and H2 sepa- ration membranes developed inside the DEMOYS project are implemented to make pre-combustion CO2 removal less energy demanding and more cost effective. Three different plant configurations are considered. Their heat and mass balance have been simulated and performance compared versus those achievable by equivalent plants based on commercially available technologies

    Efficient low CO<sub>2</sub> emissions power generation by mixed conducting membranes

    Get PDF
    The integration of gas separation membranes in the energy sector has been actively investigated in the recent years because it has the potential to provide novel plant configurations that achieve improved performanceat lower investment costs than conventional designs. In particular, carbon capture is probably the most promising application of membranes in the energy sector. Therefore extensive research programsfinalized to CCS focused on different membrane technologies, able to permeate different chemical species,relying on different transport mechanisms and operating at different temperatures.DEMOYS (Dense Membranes for Efficient Oxygen and Hydrogen Separation) is a project co-financed by the European Commission run by a consortium, led by RSE, joining 15 partners from 6 Europeancountries. The project essentially aims at the development of thin mixed conducting membranes for O2

    Notulae to the Italian alien vascular flora: 9

    No full text
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions. Furthermore, three new combinations are proposed

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore