134 research outputs found

    Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data

    Get PDF
    Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling

    Pre-operative synovial hyperaemia in haemophilia patients undergoing total knee replacement and the effects of genicular artery embolization: A retrospective cohort study

    Get PDF
    AIM: Haemophilia is characterized by recurrent joint bleeding caused by a lack of clotting factor VIII or IX. Due to repeated joint bleeding, end-stage arthropathy occurs in relatively young patients. A total knee replacement (TKR) can be a solution. However, TKR may be complicated by perioperative and postoperative bleeds despite clotting factor therapy. The aim of this study was to evaluate the prevalence of pre-operative synovial hyperaemia and the effects of Genicular Artery Embolization on synovial hyperaemia and 3-month postoperative joint bleeding. METHODS: In this retrospective cohort study, all patients with haemophilia who underwent periarticular catheter angiography between 2009 and 2020 were evaluated after written informed consent. Synovial hyperaemia on angiography was scored by an interventional radiologist. RESULTS: Thirty-three angiography procedures in 24 patients were evaluated. Median age was 54.4 years (IQR 48.4-65.9). Preoperative synovial hyperaemia was observed in 21/33 joints (64%). Moderate and severe synovial hyperaemia was observed in 10/33 joints (30%). Synovial hyperaemia decreased in 13/15 (87%) joints after embolization. Three-month postoperative joint bleeding occurred in 5/32 joints: in 2/18 joints (11%) without synovial hyperaemia and in 3/14 joints (21%) with mild synovial hypertrophy. Non-embolized and embolized joints did not differ regarding 3-month postoperative bleeding (P = .425). No complications were observed after embolization. CONCLUSION: One-third of patients with haemophilia requiring a TKR had moderate or severe synovial hyperaemia which can be reduced safely by Genicular Artery Embolization prior to TKR. Three-month postoperative bleeding appears to occur independently of the presence of residual mild synovial hyperaemia

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    What a Plant Sounds Like: The Statistics of Vegetation Echoes as Received by Echolocating Bats

    Get PDF
    A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes

    High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation

    Get PDF
    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple cafe-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P<0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients

    Modulators of Cytoskeletal Reorganization in CA1 Hippocampal Neurons Show Increased Expression in Patients at Mid-Stage Alzheimer's Disease

    Get PDF
    During the progression of Alzheimer's disease (AD), hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB) III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF) receptor tyrosine kinase B (TrkB), mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression

    Evolution of ligand specificity in vertebrate corticosteroid receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.</p> <p>Results</p> <p>We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC]) to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (<it>Mus musculus</it>) and the midshipman fish (<it>Porichthys notatus</it>), a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (<it>Neolamprologus pulcher</it>), another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences.</p> <p>Conclusion</p> <p>The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.</p

    Systematic review on quality control for drug management programs: Is quality reported in the literature?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maintaining quality of care while managing limited healthcare resources is an ongoing challenge in healthcare. The objective of this study was to evaluate how the impact of drug management programs is reported in the literature and to identify potentially existing quality standards.</p> <p>Methods</p> <p>This analysis relates to the published research on the impact of drug management on economic, clinical, or humanistic outcomes in managed care, indemnity insurance, VA, or Medicaid in the USA published between 1996 and 2007. Included articles were systematically analyzed for study objective, study endpoints, and drug management type. They were further categorized by drug management tool, primary objective, and study endpoints.</p> <p>Results</p> <p>None of the 76 included publications assessed the overall quality of drug management tools. The impact of 9 different drug management tools used alone or in combination was studied in pharmacy claims, medical claims, electronic medical records or survey data from either patient, plan or provider perspective using an average of 2.1 of 11 possible endpoints. A total of 68% of the studies reported the impact on plan focused endpoints, while the clinical, the patient or the provider perspective were studied to a much lower degree (45%, 42% and 12% of the studies). Health outcomes were only accounted for in 9.2% of the studies.</p> <p>Conclusion</p> <p>Comprehensive assessment of quality considering plan, patient and clinical outcomes is not yet applied. There is no defined quality standard. Benchmarks including health outcomes should be determined and used to improve the overall clinical and economic effectiveness of drug management programs.</p
    corecore