79 research outputs found

    Slow-Fast Analysis of a Multi-Group Asset Flow Model with Implications for the Dynamics of Wealth

    Get PDF
    The multi-group asset flow model is a nonlinear dynamical system originally developed as a tool for understanding the behavioral foundations of market phenomena such as flash crashes and price bubbles. In this paper we use a modification of this model to analyze the dynamics of a single-asset market in situations when the trading rates of investors (i.e., their desire to exchange stock for cash) are prescribed ahead of time and independent of the state of the market. Under the assumption of fast trading compared to the time-rate of change in the prescribed trading rates we decompose the dynamics of the system to fast and slow components. We use the model to derive a variety of observations regarding the dynamics of price and investors’ wealth, and the dependence of these quantities on the prescribed trading rates. In particular, we show that strategies with constant trading rates, which represent the well-known constant-rebalanced portfolio (CRP) strategies, are optimal in the sense that they minimize investment risks. In contrast, we show that investors pursuing non-CRP strategies are at risk of loss of wealth, as a result of the slow system not being integrable in the sense that cyclic trading rates do not always result in periodic price variations

    Nonlinear Dynamics and Stability In a Multigroup Asset Flow Model

    Get PDF
    The multigroup asset flow model for asset price dynamics incorporates distinct motivations, e. g., trend and fundamentals (value) and assessments of value by different groups of investors. The stability and bifurcation properties are established for the curve of equilibria. We prove that if all trader groups focus on fundamentals, then all equilibria are stable. For systems in which there is one fundamental and one momentum (trend) group, we establish conditions for stability. In particular, an equilibrium that is stable becomes unstable as the time scale on which momentum investors focus diminishes. The computations examine the excursions, which we define as the maximum deviation in price of the trajectory from its initial price located near the curve of equilibria

    Using a continuum model to predict closure time of gaps in intestinal epithelial cell layers

    Get PDF
    A two-dimensional continuum model of collective cell migration is used to predict the closure of gaps in intestinal epithelial cell layers. The model assumes that cell migration is governed by lamellipodia formation, cell-cell adhesion, and cell-substrate adhesion. Model predictions of the gap edge position and complete gap closure time are compared with experimental measures from cell layer scratch assays (also called scratch wound assays). The goal of the study is to combine experimental observations with mathematical descriptions of cell motion to identify effects of gap shape and area on closure time and to propose a method that uses a simple measure (e.g., area) to predict overall gap closure time early in the closure process. Gap closure time is shown to increase linearly with increasing gap area; however, gaps of equal areas but different aspect ratios differ greatly in healing time. Previous methods that calculate overall healing time according to the absolute or percent change in gap area assume that the gap area changes at a constant rate and typically underestimate gap closure time. In this study, data from scratch assays suggest that the rate of change of area is proportional to the first power or square root power of area

    Lac repressor mediated DNA looping: Monte Carlo simulation of constrained DNA molecules complemented with current experimental results

    Get PDF
    Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor. © 2014 Biton et al

    Interplay of Protein and DNA Structure Revealed in Simulations of the lac Operon

    Get PDF
    The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information. © 2013 Czapla et al

    DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations

    Get PDF
    Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology

    Dynamical and stochastic simulations of knotted and linked DNA

    No full text
    Presented will be two methods that allow the study of the stochastic and dynamical behavior of knotted and confined DNA molecules. One method is based on exact statistical sampling of closed configurations, the other on dynamical simulations performed using on generalized immersed boundary method. The equations of motion of the rod include the fluidâ structure interaction, sequence-dependent elasticity and a combination of two interactions that prevent self-contact, namely the electrostatic interaction and hard-core repulsion. I will discuss the dynamics of DNA trefoils and configurations of DNA Hopf links with relevance to kinetoplast DNA.Non UBCUnreviewedAuthor affiliation: University of PittsburghResearche

    Slow-fast analysis of a multi-group asset flow model with implications for the dynamics of wealth.

    Get PDF
    The multi-group asset flow model is a nonlinear dynamical system originally developed as a tool for understanding the behavioral foundations of market phenomena such as flash crashes and price bubbles. In this paper we use a modification of this model to analyze the dynamics of a single-asset market in situations when the trading rates of investors (i.e., their desire to exchange stock for cash) are prescribed ahead of time and independent of the state of the market. Under the assumption of fast trading compared to the time-rate of change in the prescribed trading rates we decompose the dynamics of the system to fast and slow components. We use the model to derive a variety of observations regarding the dynamics of price and investors' wealth, and the dependence of these quantities on the prescribed trading rates. In particular, we show that strategies with constant trading rates, which represent the well-known constant-rebalanced portfolio (CRP) strategies, are optimal in the sense that they minimize investment risks. In contrast, we show that investors pursuing non-CRP strategies are at risk of loss of wealth, as a result of the slow system not being integrable in the sense that cyclic trading rates do not always result in periodic price variations
    corecore