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Abstract

The multi-group asset flow model is a nonlinear dynamical system originally developed as

a tool for understanding the behavioral foundations of market phenomena such as flash

crashes and price bubbles. In this paper we use a modification of this model to analyze the

dynamics of a single-asset market in situations when the trading rates of investors (i.e., their

desire to exchange stock for cash) are prescribed ahead of time and independent of the

state of the market. Under the assumption of fast trading compared to the time-rate of

change in the prescribed trading rates we decompose the dynamics of the system to fast

and slow components. We use the model to derive a variety of observations regarding the

dynamics of price and investors’ wealth, and the dependence of these quantities on the

prescribed trading rates. In particular, we show that strategies with constant trading rates,

which represent the well-known constant-rebalanced portfolio (CRP) strategies, are optimal

in the sense that they minimize investment risks. In contrast, we show that investors pursu-

ing non-CRP strategies are at risk of loss of wealth, as a result of the slow system not

being integrable in the sense that cyclic trading rates do not always result in periodic price

variations.

Introduction

Modeling of price and wealth dynamics is traditionally based upon the efficient market

hypothesis, which in its semi-strong form suggests that all publicly available information is

already reflected in asset prices. Thus, any pricing mistakes caused by behavioral biases or cog-

nitive errors are immediately exploited by rational investors with ample (usually assumed to

be infinite) capital [1]. As such, these mispricings are not systematic and asset prices may be

modeled as random processes [2]. This approach yields many valuable insights and forms the

foundation for modern studies of price dynamics and option pricing. However, there are

many phenomena, such as price bubbles and “flash crashes” that have significant economic

repercussions, and yet are not explained by this classical model. This has led to the existence

and growth of the field of Behavioral Finance (see, e.g. [3]) and the development of a variety of
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new models (e.g., [4–6]) designed to deal with situations in which investors do not act ratio-

nally, i.e., they do not immediately (and correctly) update their belief of the true value of the

asset upon receiving new information and make decisions that maximize their utility [7].

These models account for factors such as the recent trend in price and behavioral biases such

as conservatism (individuals are slow to update their beliefs when presented with new evi-

dence), the representativeness heuristic (individuals assess the probability of an event based

upon its similarity to an event with which the individuals are familiar), and overconfidence.

One such model, named the multi-group asset flow model uses differential equations to

study the dynamics of asset prices and investor wealth without making assumptions regarding

an infinite supply of capital, shares, and/or traders, or any external assumptions about price

evolution and volatility [8–14]. It has proven effective in describing the evolution of asset

prices in both experimental asset markets [15] and real world financial markets [10]. The

model has also provided insights into the bubble-bust phenomenon [13] by showing how a

change in the timeframe of interest for trend-based traders can result in a “flash crash,” where

the price drops within a short time by a significant amount. Originally, this model focused on

a single group of traders who focused not only on the intrinsic value of the asset, but also the

recent trend in price [8, 16]. The model was extended in [11] to accommodate multiple inves-

tor groups and then used to offer insights into the stability of prices [17, 18]. Indeed, the model

admits a range of both stable and unstable equilibria. Thus prices may start near an unstable

equilibrium and eventually settle near a stable equilibrium that may be very close to the initial

price. However, the price path (or excursion) from one equilibria to another may be quite

large and therefore economically significant [18]. None of the previous studies on the multi-

group asset flow model performed a slow-fast analysis of the dynamics of the system nor

treated traders’ strategies as predetermined inputs to the system. The model behavior is similar

to those of other studies that have considered heterogeneity in investor beliefs within deter-

ministic price models and attempted to explain market phenomena as consequences of the

(deterministic) trading behaviors of heterogeneous agents [10, 19–22].

As described in [11] and [17], the pricing equation in the multi-group asset flow model is

based on the standard microeconomic principle that the return is proportional to excess

demand (see [23]). Indeed, we start with the following price equation

t
1

P
dP
dt
¼

D � S
S

ð1Þ

where τ is a time scale characterizing the speed of the market. In the formulation of [17] and

[18], the multi-group asset flow model has the form:

t
dP
dt
¼ F � P ð2Þ

t
dNi

dt
¼

kiMi

F
� ~kiNi i ¼ 1; 2; . . . ;G ð3Þ

t
dMi

dt
¼ � kiMi þ

~kiNiF i ¼ 1; 2; . . . ;G ð4Þ

and describes G investors (or investor groups), each endowed with two types of assets (shares

of a single non-dividend paying stock in the amount Ni and cash in the amount Mi), who

exchange these assets at rates specific to each investor and at a price P that is determined by

Dynamics in a trading model
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the ratio F of demand and supply:

F ¼
PG

i¼1
kiMi

PG
i¼1

~kiNi

: ð5Þ

The investor trading preferences are characterized by the trading rate functions, ki(t) and ~kiðtÞ,
which are to be interpreted as follows: The quantity kiMi represents the rate at which investor i
uses cash to buy stock, i.e., the proportion of cash that investor i submits per unit of time to

purchase shares. Similarly, the quantity ~kiNi represents the rate at which investor i sells the

stock, i.e., the proportion of shares that investor i submits for sale per unit of time. Hence,

the total supply (in terms of dollars), SP, of shares for sale in the market corresponds to
PG

i¼1
~kiNiP, while the demand (in terms of dollars), D, is represented as

PG
i¼1

kiMi. Thus, (2) is

obtained from (1) by substituting the appropriate values for S and D. (We direct the interested

reader to [17] for a detailed description of the model’s derivation as a limiting case of discrete-

time trading assumptions.)

The dynamics of the system (2)–(5) is determined by the market participants’ trading

rates, ki and ~ki, which vary in time according to the investors’ strategies. In the original

design of the multi-group asset model, the functions ki(t) and ~ki were chosen to be func-

tionals of the history of P or dP/dt up to the time t, reflecting situations in which traders

make decisions to buy/sell based upon the recent price’s deviation from some fundamental

value (fundamental or value investors) or the recent direction and magnitude of price

changes (momentum or trend-based investors) [17, 18], a choice that is traditionally made in

models of behavioral finance. In contrast, in this paper we focus on a different situation in

which each trader in the market specifies the trading rate as a prescribed function of time,

ki(t), independent of the dynamics of the market. Thus, the investor’s motivation to buy/sell

is not reactive but pre-planned. For example, the investor may choose to follow the so called

constant rebalanced portfolio (CRP) strategy in which the proportion of investor wealth in

different assets remains constant over a period of time by setting ki(t) = const. The investor

then effectively rebalances his portfolio by selling assets after they increase in price and buy-

ing after they decrease in price [24–27]. (CRP is also referred to as a “constant-mix” or

“fixed-mix” asset allocation strategy. A special case is the 1/n investment allocation, which

directs an individual holding a portfolio containing n assets to maintain a 1/n proportion of

wealth invested in each asset [28].) Another example of a pre-planned strategy is that of an

investor with a long-term investment horizon who maintains a percentage of 100 minus his

age in stocks and the remainder in bonds, i.e., ki(t) = 1 − αt; this strategy is common for

retirement accounts, e.g., StateFarm LifePath funds.

The objective of this paper is to evaluate the performance of the CRP strategy and other

investment strategies, expressed as functions ki(t), by analyzing their effect on the price and

investors’ wealth. Since the behavior of the market depends on the strategies of all investors

participating in it, a change in ki(t) for one investor leads to changes in the wealth of all inves-

tors. We provide evidence supporting the use of CRP trading strategy as a default approach in

the dynamical system model if the strategies of other investors are not known in advance or if

the potential for loss of wealth is to be minimized. If others’ strategies are known, then we offer

improvements to this baseline heuristic and define strategies that lead to gains in wealth. Most

of the results we present can be considered intuitive. For example, it is known that if an inves-

tor knows in advance the strategy (plan of future market orders) of another trader, then the

investor can take advantage of this information and increase his wealth at the expense of the

other trader by preemptively performing the same sequence of market orders. This is similar

Dynamics in a trading model
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to the predatory trading strategy described in [29] and [30]. Our results confirm this intuitive

conclusion by providing mathematical validation within the constructs of the model, and by

quantifying the magnitude of the wealth gain or loss as a function of the strategies chosen by

the investors.

In our analysis we focus primarily on cyclic strategies in which ki(t) are periodic functions

of time with the same period, i.e., strategies in which the proportions of investors’ wealth

invested in the asset return to their starting values. We do this to better compare the relative

gain or loss in wealth of the investors by eliminating the gains from an overall increase in

demand for the asset (or losses from an overall decrease in demand). In this sense, our paper

analyzes trading gains and losses as opposed to market gains and losses, in the spirit of [31].

For simplicity, we assume that the market equilibrates on a time-scale τ that is shorter than the

time-scale of changes in trading rates of the investors, which reflects today’s trading speed of

electronic markets. This assumption leads to the separation of the dynamics of the system (2)–

(5) into fast and slow regimes.

The paper is organized as follows: the model framework and the dynamical system describ-

ing the market are introduced in the following section. The reduction of the system to the slow

time-scale and the resulting quasi-steady market dynamics formulation is stated in the “Slow-

fast analysis” section. The main findings are derived in the section “Effects of strategies on

investor wealth” and subsequently illustrated in examples presented in the “Numerical results”

section.

Model setup

As stated above, in this paper we study the multi-group asset flow model (2)–(5). The price P,

amounts of stock Ni and amounts of cash Mi are assumed to be non-negative, i.e., we do not

allow short selling of shares or borrowing of cash. The initial conditions are defined as P(0) =

P0, Ni(0) = Ni,0, and Mi(0) = Mi,0, with i = 1, 2, . . ., G. The system (2)-(6) has two conserved

quantities, namely the total amount of cash
PG

i¼1
Mi ¼

�M and the total number of shares
PG

i¼1
Ni ¼

�N and hence represents trading within a closed system [18].

In contrast with [18], the trading rates ki and ~ki are here treated as inputs or controls for the

system. For simplicity, just as in [17] and [18], we assume that ki(t)� 0, ~kiðtÞ � 0, and

kiðtÞ þ ~kiðtÞ ¼ 1: ð6Þ

i.e., each is both buying and selling the asset continuously as long as 0< ki(t)< 1. As observed

by [18], this assumption has an important implication: at constant ki, F in (5) is constant and

(2)–(4) reduce to a system of linear equations (see also the “Slow-fast analysis” section below).

We do not wish to elaborate on the mechanism by which trading is to be realized in practice,

but one possibility is that the investor continuously maintains unfulfilled buy or sell orders in

the market. Note that ki(t) = 1 corresponds to the (all-in) “buy and hold” strategy, where the

investor exchanges all of his cash for shares, while ki(t) = 0 corresponds to the investor divest-

ing himself of all shares (i.e., exiting the market).

The wealth of an investor can be measured by the total cash value of all assets the investor

owns:

Wi ¼ Mi þ NiP ð7Þ

Dynamics in a trading model
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In view of (2)–(4), the time-rate of change of an individual investor’s wealth is given by

dWi

dt
¼ Ni

dP
dt
þ

dNi

dt
P þ

dMi

dt

¼ Ni
dP
dt
þ

dNi

dt
ðP � FÞ

¼ Ni
dP
dt
þ

dNi

dt
ð� t

dP
dt
Þ

¼ Ni � t
dNi

dt

� �
dP
dt
;

ð8Þ

which implies (not surprisingly) that when the price is constant, there is no change in the

wealth of any investor. It also implies that instantaneous positive growth of wealth can be

achieved by gradual buying, holding, or selling of the asset when the price is increasing (with

dNi/dt below Ni/τ) and buying of the asset when the price is decreasing (i.e., by keeping dNi/dt
above Ni/τ). Of course, any action taken by the investor will result in a market reaction that

will influence the future price.

The dynamics of wealth, Wi, can be better understood by analyzing a dynamical system

equivalent to (2)–(6) in which cash is replaced with wealth as a dependent variable:

t
dP
dt
¼ F � P ð9Þ

t
dNi

dt
¼

kiWi

F
� 1 � ki

F � P
F

� �

Ni ð10Þ

t
dWi

dt
¼ � kiWi þ 2 � ki

F � P
F

� �

NiF
� �

F � P
F

ð11Þ

with i = 1, 2, . . ., G, where

F ¼
PG

i¼1
kiWi � P

PG
i¼1

kiNi
PG

i¼1
ð1 � kiÞNi

ð12Þ

Note that Eqs (9)–(12) represent a closed system of differential equations with solution

depending uniquely on the initial conditions P(0) = P0, Ni(0) = Ni,0, Wi(0) = Wi,0, i = 1, . . ., G,

and the input functions ki(t).
The constant rebalanced portfolio (CRP) strategy can be naturally represented within the

model (2)–(6) (or, equivalently, the system (9)–(12)) as a strategy with a constant trading rate

ki. This is justified by the following considerations: By adopting a fixed ki strategy, the investor

has a guarantee that whenever the system reaches equilibrium, the proportion of his wealth in

the stock, Ni P/Wi, will be equal to ki and the proportion of his wealth in cash, Mi/Wi, will be

1 − ki (see also [18]). Outside of equilibrium these proportions will not necessarily be main-

tained due to a delay in the approach to equilibrium. However, the system will always move in

the direction of the appropriate wealth proportion defined by ki, i.e., the signs of dMi/dt and

dNi/dt will be such that the absolute difference |ki Mi − (1 − ki)Ni P| decreases. In the context of

the model (2)–(6) the 1/n strategy is represented by ki = 1/2, since there are only two assets in

each investor’s portfolio: cash and stock.

In the subsequent section we shall occasionally make use of vector notation with k = [k1, k2,

. . ., kG], M = [M1, M2, . . ., MG], N = [N1, N2, . . ., NG], and W = [W1, W2, . . ., WG]. In that

Dynamics in a trading model
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notation,
PG

i¼1
kiWi can be written as the dot product k �W, while

PG
i¼1
ð1 � kiÞNi can be writ-

ten as (1 − k) �N where 1 = [1, 1, . . ., 1], etc.

Slow-fast analysis

In this and the remaining sections of the paper we will treat τ as a small parameter and study

the dynamics of the system (2)–(5) in the limit as τ approaches zero, which is the case, for

example, for fast equilibrating markets that allow high-frequency trading. In traditional slow-

fast systems, the smallness parameter shows up in equations for a subset of the variables of the

system, and the system exhibits two distinct dynamical regimes: (i) rapid approach to slow

manifold and (ii) gradual movement along the slow manifold.

In the present case, the slow variables are the t-dependent functions ki(t). Since in the

Eqs (2)–(6) the time rate of change of every variable of the system is multiplied by τ, the fast
dynamics of that system can be characterized as a rapid approach to an equilibrium when all

trading rates ki are constant. For constant ki, (2)–(6) reduces to a system of linear ODEs with

G − 1-dimensional equilibrium manifold [18]

EM ¼ ðP;N;MÞ

�
�
�
�
�
N � 1 ¼ �N ; M � 1 ¼ �M ;

kiMi

ð1 � kiÞNiP
¼ 1; i ¼ 1; . . . ;G

( )

ð13Þ

From any initial condition (P0, N0, M0) the system approaches EM along a linear trajectory

given by

PðtÞ ¼ P� þ ðP0 � P�Þe� tt ð14Þ

NðtÞ ¼ N� þ ðN0 � N�Þe� tt ð15Þ

MðtÞ ¼ M� þ ðM0 � M�Þe� tt ð16Þ

where the equilibrium state ðP�;N�;M�Þ 2 EM obeys P� = (k �M0)/((1 − k) � N0),

N�i ¼ kiðMi;0=P� þ Ni;0Þ, and M�
i ¼ ð1 � kiÞðMi;0 þ Ni;0P�Þ [18].

Analogously, the system (9)–(12) converges to the G − 1 dimensional manifold

EW ¼ ðP;N;WÞ

�
�
�
�
�
N � 1 ¼ �N ; W � 1 ¼ �M þ �NP;

kiWi

NiP
¼ 1; i ¼ 1; . . . ;G

( )

ð17Þ

with P(t) and N(t) given by (14) and (15), and with

WðtÞ ¼W� þ ðW0 � W�Þe� 2tt þ N�ðP0 � P�Þð1 � e� ttÞe� tt ð18Þ

where W� = M0 + N0 P�. (Note that the last term in the above equation vanishes both at t = 0

and as t!1.)

The slow dynamics of the system is due to the time-dependence of the trading rates ki which

results in a time-dependence of the equilibrium manifold. We can derive the reduced equa-

tions for such dynamics (also called the slow subsystem) by equating the lowest order terms in

τ in each of the Eqs (9)–(11). The order of terms in those equations can be better ascertained

Dynamics in a trading model
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by rewriting the equations in the following way:

t
dP
dt
¼ F � P ð19Þ

t
dNi

dt
¼

kiWi

F
� 1 � t

ki

F
dP
dt

� �

Ni ð20Þ

dWi

dt
¼ � t

dNi

dt
dP
dt
þ Ni

dP
dt

ð21Þ

with i = 1, 2, . . ., G. By taking the limit τ! 0, we obtain the slow subsystem

0 ¼ F � P ð22Þ

0 ¼
kiWi

F
� Ni ð23Þ

dWi

dt
¼ Ni

dP
dt

ð24Þ

with i = 1, 2, . . ., G. Note that, in view of the Eqs (22) and (23), the expression for F in (12)

becomes an identity in the slow subsystem. The system is completed by providing an equation

for dP/dt which can be obtained by differentiation of (12) while assuming that the functions

ki(t) are bounded away from 0 and 1, continuously differentiable for all t. (See S1 Text.) In

summary, the slow subsystem is given by:

dP
dt
¼

P
PG

i¼1

dki

dt
Wi

PG
i¼1
ð1 � kiÞkiWi

ð25Þ

dWi

dt
¼

kiWi

P
dP
dt
; i ¼ 1; � � � ;G ð26Þ

with initial conditions P(0) = P0, W(0) = W0. For any solution (P(t), W(t)) we can recover

M(t) and N(t) using Eqs (23) and (22) as Ni(t) = ki(t)Wi(t)/P(t) and Mi(t) = (1 − ki(t))Wi(t).
The conservation laws for shares and cash imply that any solution of (25)-(26) obeys the rela-

tions

XG

i¼1

kiðtÞWiðtÞ ¼ �NPðtÞ;
XG

i¼1

ð1 � kiðtÞÞWiðtÞ ¼ �M ð27Þ

Note that the solution of (25)-(26) lies on the equilibrium manifold EW . Since we are solving

the dynamics of a quasi-steady state process, we must take the initial values to be in EW as well.

Any initial values P0 and W0 for which (27) are satisfied at t = 0 describe such an equilibrium.

(The constants �M and �N can be set in advance or determined by the initial conditions via

(27).)

The following lemma describes some general observations about the dependence of the

solutions of the system (25)-(26) on the trading rates ki(t), which are essential for the proofs of

all remaining results in this paper.

Lemma 1. Let (P(t), W(t)) be a solution of the system (25)-(26) on the interval [0, T] with
trading rates k(t) and initial conditions P(0) = P0, W(0) = W0. It follows that

Dynamics in a trading model
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1. dk(t)/dt �W(t) >(<) 0 for t 2 [0, T] if and only if dP(t)/dt>(<) 0 and, consequently, dWi(t)/
dt>(<) 0 for t 2 [0, T] for all i, 1� i� G.

2. If (k(t) − k(0)) �W0 = 0 for t 2 [0, T], then W(t) = W0 for t 2 [0, T].

3. If dki(t)/dt = 0 for t 2 [0, T] and some i, 1� i� G, then

WiðtÞ
Wi;0

¼
PðtÞ
P0

� �ki

; 8t 2 ½0;T�

In particular, if P(T) = P0 then Wi(T) = Wi,0.

4. If there are constants α1, α2, . . ., αG, β such that
PG

j¼1
ajkjðtÞ ¼ b for t 2 [0, T], then

W1ðtÞ
W1;0

!a1

W2ðtÞ
W2;0

!a2

� � �
WGðtÞ
WG;0

!aG

¼
PðtÞ
P0

!b

; 8t 2 ½0;T�

0

@

0

@

0

@

0

@

5. If there are nonzero constants η1, η2, . . ., ηG, and a function f(t) such that ki(t) = ki,0 + ηi f(t)
for t 2 [0, T], then for any i, 1� i� G,

WiðtÞ
Wi;0

 ! 1
Zi PðtÞ

P0

� �ki;0
Zi

¼ gðPðtÞÞ

where g(P) is defined implicitly as the function of P that satisfies the following relation (for all
P):

XG

i¼1

Wi;0
P
P0

� �ki;0

gðPÞZi ¼ �M þ �NP:

6. For any i, j, 1� i, j� G, the ratio Wi(t)/Wj(t) instantaneously increases with t if and only if
ðkiðtÞ � kjðtÞÞ dP

dt > 0.

7. If ð~PðtÞ; ~WðtÞÞ is a solution of (25)-(26) with initial conditions P(0) = βP0, W(0) = αW0,

where α,β> 0, and with trading rates ~kðtÞ ¼ kðsðtÞÞ where σ(t) is a monotone increasing dif-
ferentiable function, then

ð~PðtÞ; ~WðtÞÞ ¼ ðbPðsðtÞÞ; aWðsðtÞÞÞ

The proof of Lemma 1 is provided in S2 Text.

In the context of the model, the mathematical statements of Lemma 1 can be interpreted as

follows:

1. no investor can gain wealth when price falls or lose wealth when price increases, and the

price increases if and only if the direction of the change in trading rates is along the direc-

tion of the wealth vector,

2. no investor gains or loses wealth as long as the change in trading rates remains orthogonal

to the vector of starting wealth,
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3. if any investor pursues the CRP strategy, then his wealth is a monotone function of the

price. In particular, after any process in which the price returns to its starting value his ter-

minal wealth equals his initial wealth.

4. when the trading strategies of all investors are constrained by a linear relation, then the

wealths of all investors and the price are related by a multiplicative constraint.

5. when the trading strategies of all investors form a linear path in the trading rate space then

the wealth of any investor can be expressed as a nonlinear function of the price (a generali-

zation of (iii)).

6. one investor gains wealth relative to another investor if and only if the difference in their

trading rates corresponds to the direction of change in price,

7. the dynamics of the system (25)-(26) is rate invariant, and independent of the scaling of the

price, and the wealth vector.

Effects of strategies on investor wealth

We shall now analyze several special scenarios in which the majority of investors pursue CRP

strategies and study the gain or loss in wealth of the remaining investors. We begin by focusing

on the case in which all investors follow the CRP strategy, which leads to an especially simple

market behavior. Then we assume that one or two investors depart from the constant trading

rate strategy, pit the participants against each other, and determine the winners and losers.

All CRP strategies

In the scenario where all investors pursue CRP strategies, the behavior of the system is particu-

larly simple. It follows from (25) that during quasi-steady state dynamics the price stays con-

stant (since the system starts already in equilibrium) and so does the wealth of each of the

investors.

One non-CRP strategy

In the scenario where one investor chooses to pursue a non-CRP strategy while all others pur-

sue CRP strategies, the price no longer remains constant. Intuitively, when the investor

chooses to increase his holdings of the asset (i.e., the proportion of his wealth in the asset com-

pared to his total wealth), the price will increase, and so will the wealth of all other investors.

However, we show that in this scenario, upon return to the original holdings (i.e., after one

period of a cyclic trading strategy) the price returns to its original value and so does the wealth

of all investors in the market.

Suppose that all investors pursue CRP strategies except for investor i = 1. Using Lemma 1

(iii) we can rewrite the system (25)-(26) as a two-variable system:

dP
dt
¼

PW1

ð1 � k1Þk1W1 þ
PG

i¼2
ð1 � kiÞkiCiPki

dk1

dt ð28Þ

dW1

dt
¼

k1W1

P
dP
dt

ð29Þ

where Ci ¼Wi;0=P0
ki . Note that both Eqs (28) and (29) are of the type dX/dt = A(t)dk1/dt

where A is positive. It follows that the functions P(t) and W1(t) are monotone increasing

(decreasing) whenever k1(t) is monotone increasing (decreasing).
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Consider now the system:

d~P
dx
¼

~P ~W 1

ð1 � xÞx ~W 1 þ
PG

i¼2
ð1 � kiÞkiCi

~Pki
ð30Þ

d ~W 1

dx
¼ x ~W 1

~P
d~P
dx

ð31Þ

This system has locally Lipschitz r.h.s everywhere in the positive quadrant, and hence the IVP

(30)-(31) with initial conditions 0 < ~Pðx0Þ and 0 < ~W 1ðx0Þ, 0< ξ0 < 1, has a unique solution

in that domain. Furthermore, this system has two first integrals which are derived from (27)

and take the form:

x ~W 1 þ
XG

i¼2

kiCi
~Pki ¼ �N ~P ð32Þ

ð1 � xÞ ~W 1 þ
XG

i¼2

ð1 � kiÞCi
~Pki ¼ �M ð33Þ

These integrals form a system of algebraic equations for ð~P; ~W 1Þ, which has a unique solution

ð~PðxÞ; ~W 1ðxÞÞ for each ξ in the interval [0, 1].

The following observation follows from the above derivations and from Lemma 1(vii): If

~PðxÞ and ~W 1ðxÞ are solutions of the IVP (30)-(31) with ~Pðk1ð0ÞÞ ¼ P0 and ~W 1ðk1ð0ÞÞ ¼W1;0,

then the functions PðtÞ ¼ ~Pðk1ðtÞÞ, W1ðtÞ ¼ ~W 1ðk1ð0ÞÞ solve the IVP (28)-(29) with initial

conditions P0 and W1,0. This result has important implications for the change in wealth along

cyclic strategies, i.e., strategies for which ki(T) = ki(0) for some T> 0 for i = 1, 2, . . ., G. A cyclic

strategy represents the case in which an investor temporarily increases (or decreases) his rela-

tive investment in the asset before returning to the original proportion. This is commonly

done for speculative reasons, in order to take advantage of market fluctuations. A particular

case is when the investor enters the market, trades for a finite interval of time, and then exits

the market (in this case k1(T) = k1(0) = 0). The result, summarized in the following theorem,

implies that there will be no net change in the investor’s wealth after a cyclic strategy is exe-

cuted in a quasi-steady state process, provided all other investors pursue CRP strategies.

Theorem 2. Let (P(t), W(t)) be a solution of the system (25)-(26) on the interval [0, T] with
trading rates k(t) and initial conditions P(0) = P0, W(0) = W0. If k1(T) = k1(0) and dki(t)/dt = 0

for t 2 [0, T], 2� i� G, then P(T) = P0 and W(T) = W0.

In other words, in a quasi-steady process, if one investor executes a cyclic non-CRP strategy

while all other investors execute CRP strategies, then the final wealth of every investor equals

the starting wealth, and the final price equals the starting price. See Fig 1 for an illustration of

this result.

Two non-CRP strategies

When two investors are executing non-CRP strategies simultaneously, the outcome is different

from the previous two cases. As we shall see below, even if the strategies are cyclic, the wealth

of both investors can change over one cycle, i.e., one of the investors may gain wealth while the

other loses wealth. For example, if one investor becomes aware that another, distressed trader

may need to temporarily liquidate his holdings, the first investor can choose to sell before the

distressed trader is able to, thereby lowering the price, and subsequently buy back the asset at a
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lower price. Both traders then execute a cyclic strategy but the first one loses while the second

one gains wealth. Another scenario is when information becomes public at time t1 causing

both investors to buy the asset. Subsequently, new information becomes available at time t2 >

t1 causing both investors to sell. If investor 1 is able to act before investor 2 in both cases, then

investor 1 increases his terminal wealth at the expense of investor 2. This type of behavior is

called predatory trading [29, 30]. Below we show it is detrimental to the investor’s wealth to be

the second-mover or follower of another’s trading strategy (i.e., to not be the first investor to

act).

The system with time-dependent trading rates k1(t) and k2(t) while others maintain fixed

rates can be analyzed as follows. In view of Lemma 1(iii), (25)-(26) reduce to:

dP
dt
¼

P W1

dk1

dt þW2

dk2

dt

� �

ð1 � k1Þk1W1 þ ð1 � k2Þk2W2 þ
PG

i¼3
ð1 � kiÞkiCiPki

ð34Þ

dW1

dt
¼

k1W1

P
dP
dt

ð35Þ

dW2

dt
¼

k2W2

P
dP
dt
: ð36Þ

Using the relations (27), we can express W1 and W2 in terms of P as

W1 ¼
PN̂ðPÞð1 � k2Þ � M̂ðPÞk2

k1 � k2

ð37Þ

W2 ¼
M̂ðPÞk1 � PN̂ðPÞð1 � k1Þ

k1 � k2

ð38Þ

with N̂ðPÞ ¼ �N �
PG

i¼3
kiCiPki � 1, M̂ðPÞ ¼ �M �

PG
i¼3
ð1 � kiÞCiPki , and Ci depending on the

initial condition. Note that finiteness and positivity of W1 and W2 requires that whenever t = t�

Fig 1. One non-CRP investor. Dynamics of a market with one non-CRP investor who enters and then exits the market in accord

with the trading rate k1(t) (panel (a)), and five CRP investors with randomly chosen parameters. In panel (b), the price P (solid red),

the wealth W1 (dashed green) of the non-CRP investor, and the wealth of each CRP investor (solid cyan) first increase and then

return to their initial values.

https://doi.org/10.1371/journal.pone.0207764.g001
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where k1(t�) = k2(t�) = k�, then P� = P(t�) is determined by k� as the solution of

P�N̂ðP�Þð1 � k�Þ ¼ M̂ðP�Þk�: ð39Þ

Note also that @ðPN̂ðPÞÞ=@P > 0 while @M̂ðPÞ=@P � 0.

Substitution into (34) yields a single equation for P:

dP
dt
¼ P

PN̂ðPÞ ð1 � k2Þ
dk1

dt � ð1 � k1Þ
dk2

dt

� �
� M̂ðPÞ k2

dk1

dt � k1

dk2

dt

� �

ðk1 � k2Þ½PN̂ðPÞð1 � k1Þð1 � k2Þ þ M̂ðPÞk1k2 þ SðPÞ�
ð40Þ

where SðPÞ ¼
PG

i¼3
ð1 � kiÞkiCiPki . Note that the constants Ci in N̂ðPÞ, M̂ðPÞ, and ŜðPÞ are

determined by the initial conditions (P0, W0). Clearly, the Eq (40) is singular whenever k1(t) =

k2(t) and hence its solution is not defined at those points. Thankfully, (39) defines the values of

P(t) for all such t.
Eq (40) is difficult to solve analytically, but we can obtain information about the behavior

of the system by using Lemma 1. First of all, we can deduce from Lemma 1(vii) that the final

wealth of each investor after one cycle is independent of how fast the system travels along

the cycle, but depends only on the initial conditions (P0, W0) of the system and the path

γ = {k(t)|t 2 [0, T]} of the system in the k-space. A cyclic strategy is then represented by an

oriented closed path γ.

The next theorem relates the changes in P and Wi for any cyclic strategy. We have seen in

the section above that by maintaining the CRP strategy, the investor minimizes any risk of loss

of wealth over a cyclic strategy if one investor in the market does not follow the CRP strategy.

Unfortunately, this is no longer true if two or more investors follow time-dependent strategies.

In such a situation, at the end of the cycle the price P need not return to its original value, and

any change in price will result in a change of wealth even for the CRP investors. In addition,

between the two investors with non-CRP strategies, one investor’s wealth will increase at the

expense of the other.

Theorem 3. Let (P(t), W(t)) be a solution of the system (25)-(26) on the interval [0, T] with
initial conditions P(0) = P0, W(0) = W0 and trading rates k(t) such that dki(t)/dt = 0 for t 2 [0,

T], 3� i� G, while k1(t) and k2(t) on the interval [0, T] form a closed curve γ in the (k1, k2)

plane. Then for 3� i� G,

sgnðW2ðTÞ � W2;0Þ ¼ � sgnðW1ðTÞ � W1;0Þ;

sgnðWiðTÞ � Wi;0Þ ¼ sgnðPðTÞ � P0Þ ¼ sgnððW1ðTÞ � W1;0Þðk1ð0Þ � k2ð0ÞÞÞ

The proof of Theorem 3 is provided in S3 Text.

Let us now focus on special paths γ for which we can deduce the sign of the change in

wealth of investors 1 and 2. Lemma 1(ii) tells us that if a segment of that path is orthogonal to

W then W is constant along that segment. Furthermore, Lemma 1(iv) tells us that along path

segments that lie on lines passing through the origin, i.e., for which α1k1(t) + α2k2(t) = 0, there

is a special relation between W1(t) and W2(t), namely

W1ðtÞ
W1;0

!a1

¼
W2ðtÞ
W2;0

!� a2

ð41Þ

  

Together, we can use these results to construct special strategies corresponding to quadrilateral

paths along which W1 (or W2) increases (or decreases) during one cycle. Schematic depiction

of changes in W when investor strategies follow the quadrilateral path ABCD outlined in

Lemma 4 are shown in Fig 2.
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Lemma 4. Let (P(t), W(t)) be a solution of the system (25)-(26) on the interval [0, T] with ini-
tial conditions P(0) = P0, W(0) = W0 and trading rates k(t) such that dki(t)/dt = 0 for t 2 [0, T],

3� i� G, while k1(t) and k2(t) on the interval [0, T] form a path in the k-space that is a counter-
clockwise labeled quadrilateral ABCD with vertices A = k(0) = k(T), B = k(tB), C = k(tC), D = k

(tD), where 0< tB< tC< tD< T, the side AB is orthogonal to W0, the sides BC and DA lie on
distinct lines passing through the origin, the side CD is orthogonal to W(tC), and A is the vertex
with the largest k1. Then W1(T)>W1,0 and W2(T)<W2,0.

The proof of Lemma 4 is provided in S4 Text.

A generalization of Lemma 4 can be obtained for a system that consists of CRP investors

and two non-CRP investors who follow an arbitrary piecewise smooth Jordan path:

Theorem 5. Let (P(t), W(t)) be a solution of the system (25)-(26) on the interval [0, T] with
initial conditions P(0) = P0, W(0) = W0 and trading rates k(t) such that dki(t)/dt = 0 for t 2 [0,

T], 3� i� G, while k1(t) and k2(t) on the interval [0, T] form a piecewise smooth Jordan curve γ
in the (k1, k2) plane. Then W1(T) − W1,0 > 0 (and consequently W2(T) − W2,0 < 0) if and only if
γ is traveled counterclockwise.

The proof of Theorem 5 is provided in S5 Text.

In the context of the model, Lemma 4 and Theorem 5 state that if two investors change

their preferences along a non-intersecting curve in the (k1, k2) plane then investor 1 gains

wealth if the curve is traveled counterclockwise and loses wealth if the curve is traveled clock-

wise. The result can also be interpreted in the following way: in order to gain wealth, investor 1

must anticipate the changes in the strategy of investor 2 so that the peak in k1(t) precedes the

peak in k2(t) and the trough of k1(t) precedes the trough in k2(t). In that case, investor 2, whose

wealth decreases throughout the process, can also be observed as the follower of the changes in

the trading rate of investor 1. This is similar to the predatory trading scenario described in [29]

and [30] where investor 1 would be considered the predator and investor 2 the distressed

trader.

Theorem 5 has an important consequence that exemplifies the importance of CRP strate-

gies for minimization of investment risks. In an environment consisting of CRP investors,

once one investor (say investor 2) departs from the CRP investment strategy, there is a risk

Fig 2. Two non-CRP investors. Dynamics of a market with two non-CRP investors whose strategies follow the closed quadrilateral

path in the (k1, k2) plane traversed counterclockwise as ABCDA (panel (a)). In panel (b), both the price P (solid red) and the wealth

W1 (dashed green) finish above the starting values, while wealth W2 (dash-dot blue) finishes below. (The green arrows in panel (a)

here and in the figures below, depict the vector W at selected points along the path.)

https://doi.org/10.1371/journal.pone.0207764.g002
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that another investor (say 1) may anticipate the strategy of investor 2 and adjust his strategy so

as to gain wealth at the expense of investor 2. This can be formalized as:

Theorem 6. Let (P(t), W(t)) be a solution of the system (25)-(26) on the interval [0, T] with
initial conditions P(0) = P0, W(0) = W0 and trading rates k(t) such that dki(t)/dt = 0 for t 2 [0,

T], 3� i� G. For any piecewise smooth non-constant cyclic strategy k2(t), t 2 [0, T], and any K
there exists a cyclic strategy k1(t) with k1(0) = k1(T) = K such that W1(T) − W1,0 > 0 and W2(T)

− W2,0 < 0.

The proof of Theorem 6 is provided in S6 Text.

The last theorem shows that if a trader deviates from a CRP strategy, then this trader is sus-

ceptible to a decrease in wealth should another trader decide to also deviate. Thus, the CRP

strategy is rational in that any trader who departs from the CRP strategy can potentially do

worse with respect to his change in wealth. Indeed, the CRP strategy is first about minimizing

risks and then about maximizing profits.

Before proceeding to the numeral analyses of the model, we summarize the theoretical

results of this section. Theorem 2 implies that if all but one investor follow a CRP strategy,

then after any cyclic change in the trading rate of the non-CRP investor (and potential tempo-

rary increase or decrease of price) both the price and the wealth of all investors return to their

initial values. (This describes, for example, the scenario in which a non-CRP investor enters

the market, trades the asset for a while, and then sells the asset and exits the market.) Theorems

3, 5, and 6 state that if two investors follow cyclic non-CRP strategies, then (i) wealth will be

transfered from one investor to the other, (ii) the direction of the wealth transfer benefits the

investor who pre-empts the other’s strategy, and (iii) every non-CRP strategy can lead to a loss

of wealth by the choice of an appropriate competing non-CRP strategy (i.e., no non-CRP strat-

egy is safe). If the price changes during this process, then the terminal wealths of the CRP trad-

ers will also change. However, as our numerical studies shown below indicate, the changes in

wealth of the CRP investors are order of magnitude smaller than those of the non-CRP inves-

tors. From a game-theoretic perspective, Theorem 6 suggests that the CRP strategy minimizes

risk among all potential investor strategies, and hence is a pure strategy Nash equilibrium of

the system when considered as a differential game with wealth gain representing the payoff.

Numerical results

Here we present numerical studies of various trading scenarios illustrating the results in the

previous sections and a few additional observations. Our primary objective is the analysis of

the dynamics of traders’ wealth using the scenario in which all traders adhere to CRP strategies

as the baseline. We then consider the impact to investors’ wealth positions as certain investors

begin to follow non-CRP strategies. The initial wealth of each non-CRP investor has been

scaled to one to facilitate interpretation of the economic meaning of the graphical/numerical

results presented in this section. Moreover, the percentage change in wealth (as well as price)

is included in Table 3.

As our first example, let us consider a scenario in which a non-CRP investor joins a market

consisting of five CRP investors, trades for a set period of time, and then exits the market.

(Note that the trading rate functions, ki(t), are assumed to be continuous. Discontinuous trad-

ing rates will be discussed in a future study.) This represents a cyclic strategy for the single

non-CRP investor as the initial trading rate, k(0) = 0, equals the ending trading rate, k(T) = 0,

where T is the period of one cycle (see Fig 1(a)). Thus, Theorem 2 applies and the terminal

wealth should equal the initial wealth for each investor in the system. Indeed, consider Fig

1(b). The wealth curves for the CRP investors (thin lines) follow the relation, WiðtÞ ¼ CiPðtÞ
ki ,

given in Lemma 1(iii). Note that Ci, i = 2, . . .5, was randomly chosen in the simulations. The
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ending price P(T) is equal to P0, and Wi(T) are equal to Wi,0, to within the accuracy of numeri-

cal simulations. Not surprisingly, the main result of the addition of a single non-CRP investor

to a market of CRP investors is an increase in demand for the asset which leads to an increase

in price by a factor of 3.5, amounting to a price “bubble” as the non-CRP investor increases his

holdings in the asset. The price maintains its high level until the non-CRP investor begins his

exit from the market. [12] conjecture bubbles may result from the actions of momentum trad-

ers with bubbles cresting when these traders run out of cash. Here we see the occurrence of a

bubble when a single investor enters the market. In both scenarios there is an influx of cash

driving the bubble—consistent with theoretical [9], experimental [15, 32], and empirical [33]

studies.

As our second example, let us consider a scenario with two investors who follow trading

preferences along the polygonal curve depicted in Fig 2(a), which satisfies the assumptions of

Theorem 4. Indeed, the curve is traveled counterclockwise starting at A. Sides BC and DA lie

on distinct lines through the origin, while side AB is perpendicular to W(t0) = (W1,0, W2,0) =

(1, 1), and side CD is perpendicular to W(tC). The green arrows represent the vector (W1, W2)

at selected points along the strategy path. Note that in accord with Lemma 1(ii), W is constant

along AB and along CD, while along BC and along DA, W rotates clockwise in accord with

Lemma 1(iv). As a result, there is a net change in W1 and W2 along the cycle, i.e., W1(T)>

W1,0 and W2(T)<W2,0, as indicated by two arrows at the starting point A corresponding to

W(0) and W(T). Fig 2(b) displays plots of the price and the wealths of both investors versus

time.

In the next set of examples, we consider the scenarios corresponding to a market with seven

traders of which two follow cyclic trading strategies, while the rest follow CRP strategies. The

closed strategy paths in Fig 3(a) and 3(c) are traversed counterclockwise (ABCDA) with k1(t)
< k2(t) in Fig 3(a) and k1(t)> k2(t) in Fig 3(c). The curves in Fig 3(e) and 3(g) are the same as

in 3(a) and 3(c), but traversed clockwise (ABCDA) with k1(t)< k2(t) in Fig 3(e) and k1(t)>
k2(t) in Fig 3(g). Fig 3(b), 3(d), 3(f) and 3(h) display the corresponding evolution of the price

and wealths of investors one through seven. Investors 3 through 7 adhere to CRP strategies

with parameters that were chosen randomly and kept identical for all path choices in Fig 3.

The results shown in these figures are consistent with the results of Theorem 3, in that the

Table 3. Percentage change in price and wealth of each investor for Figs 1, 2, 3, 4, 6, 7, 8.

non-CRP CRP

Fig P W1 W2 W3 W4 W5 W6 W7 W8

1 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

2 54.40% 95.20% -19.04%

3b -5.100% 7.550% -14.630% -2.580% -4.900% -1.770% -3.020% -1.170%

3d 11.68% 19.78% -7.820% 5.660% 11.19% 3.830% 6.680% 2.500%

3f 5.560% -8.080% 15.94% 2.740% 5.330% 1.860% 3.220% 1.220%

3h -10.54% -17.63% 7.350% -5.400% -10.14% -3.720% -6.310% -2.460%

4b 0.000% 4.220% -4.220% 0.000% 0.000% 0.000% 0.000% 0.000%

4e -1.420% 1.130% -2.690% -0.710% -1.360% -0.490% -0.830% -0.320%

6b 0.000% -0.016% 0.016% 0.000% 0.000% 0.000% 0.000% 0.000%

6c -0.002% -0.017% 0.014% -0.001% -0.002% -0.001% -0.002% -0.001%

7 -0.150% -1.990% 1.830% -0.080% -0.150% -0.100% -0.120% -0.070%

8 -2.600% 20.11% -22.23% -35.97% -0.920% -2.160% -1.530% -1.440% -2.380%

Percentage changes in price and the wealth of investors following either non-CRP or CRP strategies.

https://doi.org/10.1371/journal.pone.0207764.t003

Dynamics in a trading model

PLOS ONE | https://doi.org/10.1371/journal.pone.0207764 November 29, 2018 15 / 25

https://doi.org/10.1371/journal.pone.0207764.t003
https://doi.org/10.1371/journal.pone.0207764


price (and consequently the wealth of all CRP investors) decreases along the cycle if the path is

traveled counterclockwise and k1(t)< k2(t), or if the path is traveled clockwise and k1(t)>
k2(t). Incidentally, in this example all curves are also Jordan curves hence the outcome is con-

sistent with the results of Theorem 5, in that W1(T)>W1,0 for curves traveled counterclock-

wise and W1(T) <W1,0 for those traveled clockwise.

In the next set of figures, let us look more closely at scenarios in which investor 1 anticipates

the actions of investor 2. This scenario is an appropriate idealization of cases in which a news

announcement is made at time t = 0 causing both investors to sell the asset, but investor 1 is

able to act more quickly than investor 2. Thus, investor 1 reduces his position in the asset

(from 60% of his wealth to 40%) from time t = 0 to t = 1, i.e. along the line segment AB in Fig

4(a). At this point investor 2 begins to sell, while investor 1 maintains his position. Next, sup-

pose another piece of information becomes available at time t = 2, point C, causing the inves-

tors to buy. Again, investor 1 is able to react more quickly (along line segment CD), while

investor 2 does not begin to buy until time t = 4, point D. While the investors begin and end

with the same strategy in the (k1, k2) plane, point A, and have the same initial wealth, Wi = 1,

the ending wealth of investor 1 has increased, while that of investor 2 has decreased (see Fig

4(b)). By pre-empting the moves of his fellow investor, investor 1 gains wealth (i.e., W1(T)>

W1,0) at the expense of investor 2. As noted in the prior section, the peak (trough) in k1(t) pre-

cedes the peak (trough) in k2(t). This is depicted graphically in Fig 4(c). The trough for investor

2 occurs during 2� t� 3, while the trough for investor 1 occurs for 1� t� 2. Similarly, the

peak for investor 2 begins at t = 4, while the peak for investor 1 occurs from t = 3 to t = 4. Note

that the scenarios depicted in Fig 4 are similar to the predatory trading scenario described in

[29] and [30]. In particular, Fig 4 is analogous to Figs 1 and 2 in [29].

As follows from Theorems 3 and 5 and is depicted in Fig 3, if all but two investors (say

investors 1 and 2) utilize CRP strategies, then Wi(T) <Wi,0, i� 3, provided k1(0)< k2(0) and

the curve in (k1, k2) plane is traversed counterclockwise. Interestingly, note that investor 1

need not hold a large position in the asset in order to negatively impact the price and

Fig 3. Two non-CRP investors. Dynamics of a market with two non-CRP and five CRP investors (with randomly

chosen parameters). The non-CRP investors 1 and 2 follow strategies corresponding to the closed paths (traversed as

ABCDA) in panels (a), (c), (e), and (g), and give rise to dynamics in panels (b), (d), (f), and (h), respectively. In (b) and

(d), the wealth W1 (dashed green) finishes above its starting value and W2 (dash-dot blue) finishes below (since the

path is traveled counterclockwise), while in (f) and (h) the situation is reversed. The wealth of the CRP investors (solid

cyan) is essentially unchanged. The price (solid red) finishes above its starting value in (d) and (f) and below in (b) and

(h).

https://doi.org/10.1371/journal.pone.0207764.g003
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subsequently the wealth of all other investors. Indeed, consider Fig 4(d) and 4(e) in which

investor 1 begins with 20% of his wealth in the asset, reduces to 10%, and ends again with 20%.

In this scenario the wealths of investors 2 through 7 decrease by an average of 2%, while the

price drops 3.2%.

It is interesting to note that the inclusion of additional CRP traders acts as a dampener on

the system. That is, as the number of CRP investors increases, the wealth changes for all inves-

tors (including the non-CRP investors) decrease. Using the scenario of Fig 4(b) as an example,

if we fix the strategies of non-CRP investors 1 and 2, and change the number of CRP investors

to 0, 1, 2, 5, 10, 20, or 50, then the change in wealth of investor 1 is 8.12%, 6.49%, 6.37%,

4.22%, 3.00%, 1.75%, 0.87%, respectively. This follows from equation (34) that models the

change in price. The numerator is a sum over the two non-CRP investors, while the denomina-

tor is a sum over all investors. Thus, as the number of CRP investors grows, the instantaneous

change in price decreases. And, equations (35) and (36) imply that instantaneous changes in

the wealth of the non-CRP investors is proportional to the change in price. From an economics

perspective, CRP investors will sell (buy) to rebalance their portfolio in response to an increase

(decrease) in price. This, of course, exerts a downward (upward) pressure on the price thereby

mitigating the price change. As the number of CRP investors in the market increases, this

effect will be magnified resulting in smaller and smaller price changes. Recall that non-CRP

investor 1 increases his wealth by preempting the trading strategy of non-CRP investor 2.

Larger price changes correspond to larger gains (losses) for investor 1 (2). Thus, the inclusion

of additional CRP investors decreases the potential for gains by investor 1.

In the next example we explore the effect of the area enclosed by the path in (k1, k2) plane

on the magnitude of wealth increase/decrease along the path. We performed seven simulations

of a market with seven investors consisting of two non-CRP investors (1 and 2) and five CRP

investors. In each simulation the strategies of investors 1 and 2 vary along a counterclockwise

Fig 4. One non-CRP investor gains at the expense of a second non-CRP investor. Dynamics of a market with two

non-CRP investors that follow strategies in panels (a) and (d) (traversed counterclockwise as ABCDA). In panels (b)

and (e), the wealth W1 (dashed green) finishes above its starting value while the wealth W2 (dash-dot blue) finishes

below. The price (solid red) and the wealth of CRP investors (solid cyan) are essentially unchanged. Panel (c) shows

how in panel (a) the trading rate k2 of investor 2 (dash-dot blue), follows with a delay that of investor 1, k1 (dashed

green).

https://doi.org/10.1371/journal.pone.0207764.g004

Dynamics in a trading model

PLOS ONE | https://doi.org/10.1371/journal.pone.0207764 November 29, 2018 17 / 25

https://doi.org/10.1371/journal.pone.0207764.g004
https://doi.org/10.1371/journal.pone.0207764


square path labeled Si (here S1 denotes the square with the largest area and S7 the square with

the smallest area) with starting vertex A = (0.7, 0.7) (see Fig 5). Investors 1 and 2 each begin

with an initial wealth of 1, and the starting price is 0.9. The initial wealths and strategies for

investors 3-7 were randomly chosen and then used for each of the seven simulations. Consis-

tent with Theorem 5, the relative change in wealth is positive for investor 1 and negative for

investor 2. Moreover, note that the magnitude of relative change in wealth decreases for both

investors as the area of the square traversed decreases (see Table 1). Since k1(0) = k2(0) in this

scenario, in accord with Theorem 3, investor 1’s increase in wealth comes solely at the expense

of investor 2, and there is no difference between the beginning and ending price.

All preceding examples describe scenarios in which the strategies of two investors form

non-intersecting paths in the (k1, k2) plane, with the possible addition of several CRP investors

with constant ki. In the next set of examples we explore the dynamics of a market with a total

of seven investors, in which a cyclic strategy path of investors 1 and 2 intersects itself once

Fig 5. Two non-CRP investors’ wealth along inscribed squares. Seven square paths in the (k1, k2) plane. The largest

square, S1, is labeled ABCD.

https://doi.org/10.1371/journal.pone.0207764.g005

Table 1. Relative change in wealth of non-CRP investors 1 and 2 along each square path in Fig 5.

Investor S1 S2 S3 S4 S5 S6 S7

One 0.1668 0.1269 0.0929 0.0645 0.0414 0.0235 0.0106

Two -0.1.668 -0.1269 -0.0929 -0.0645 -0.0414 -0.0235 -0.0106

The area of the square decreases from S1 to S7.

https://doi.org/10.1371/journal.pone.0207764.t001
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forming two closed “loops.” Again, the parameters for CRP investors 3 through 7 were ran-

domly chosen and then the same values were utilized in each simulation.

First we consider a symmetric lemniscate path in which the two loops (IABCI and IDEFI)

enclose equal areas, shown in Fig 6(a). The remaining panels of this figure show that the evolu-

tion of price and wealths of all investors is strongly dependent upon the starting point on the

path. The dynamics shown in Fig 6(b) pertains to the case in which the lemniscate path starts

and ends at the intersection point I, traces the “left-hand” loop in a clockwise direction

(IABCI), and then follows the “right-hand” loop in a counterclockwise direction (IDEFI). As

Table 2 shows, after completing the first loop, the wealth of investor 2 has increased at the

expense of investor 1, and there is no change in price, consistent with Theorems 3 and 5. As

the second (“right-hand”) loop is traversed in a counterclockwise manner, the wealth of inves-

tor 1 increases while the wealth of investor 2 decreases, and there is no change in price (again

consistent with Theorems 3 and 5 applied to the path IDEFI). The increase in W1 in the second

loop is not large enough to make up for the decrease in W1 in the first loop, and hence the

overall result is a decrease in wealth of investor 1 when the complete lemniscate (IABCIDEFI)

is traveled. The dynamics shown in Fig 6(c) are produced by following the lemniscate in the

same direction, but starting and ending at the apex E of the right loop. (Note that the same ini-

tial wealths, price, and ki values were utilized to produce the figures in panels (b) and (c).)

Although the ending wealths and price are similar as in the previous situation (see the second

and third panels in Table 2), they are not identical, since the starting point E is such that

k1(0)>k2(0) and, in accord with Theorem 3, price decreases during the process. Therefore, the

choice of the starting point for the excursion around the strategy curve has significant effect on

the dynamics of the system.

Fig 6. Two non-CRP investors’ strategies corresponding to a lemniscate. Dynamics of a market with two non-CRP

investors and five CRP investors with randomly chosen parameters. Investors 1 and 2 follow strategies corresponding

to the lemniscate path in panel (a). For strategies corresponding to the path traveled as IABCIDEFI (b) or as

EFIABCIDE (c), the wealth W1 (dashed green), the wealth W2 (dash-dot blue), the price (solid red), and the wealth of

CRP investors (solid cyan) return essentially to their starting values.

https://doi.org/10.1371/journal.pone.0207764.g006
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In the next example we consider a self-intersecting path that is not symmetric and which

has two loops (IFAB and ICDE) that enclose unequal areas (see Fig 7(a)). We start at the point

A and move to the left passing through the points BICDEIF and returning to A. Note the oscil-

latory behavior of the price and wealth curves in panel (b). Although the ending wealths are

similar to the initial wealths (see the bottom panel of Table 2), investor 1 loses while investor 2

gains wealth, which is consistent with the fact that the loop that is traveled clockwise (IFABI) is

larger in area than that traveled counterclockwise (ICDEI). Note that the wealth of each inves-

tor (whether a CRP or a non-CRP investor) may vary dramatically throughout the timeframe.

The last example describes a market with three non-CRP investors following cyclic trading

strategies where all three investors react to information in the same manner (i.e., they tempo-

rarily alter their trading preferences ki), but investor 1 acts first followed by investor 2 and then

by investor 3 (see Fig 8(a) which is traversed as ABCDEFA). In Fig 8(b), similar to Fig 4, one

can also observe a transfer of wealth: after one complete cycle, only investor 1 experiences an

increase in wealth, while investors 2 and 3 both have a decrease in wealth. Moreover, the

wealth of investor 3 (the last investor to act) declines more than that of investor 2. The curves

Fig 7. Two non-CRP investors’ strategies corresponding to a non-symmetric lemniscate. Dynamics of a market

with two non-CRP investors and five CRP investors with randomly chosen parameters. The non-CRP investors 1 and

2 follow strategies corresponding to the path in panel (a) traversed as ABICDEIFA. In panel (b) the price (solid red),

the wealth W1 (dashed green), and the wealth of CRP investors (solid cyan) finish below their starting values, while the

wealth W2 (dash-dot blue) finishes above.

https://doi.org/10.1371/journal.pone.0207764.g007

Table 2. Changes in price and investor wealth.

P W1 W2 W3 W4 W5 W6 W7

Initial 0.9000 1.0000 1.0000 0.8551 1.0334 1.0391 1.0452 0.9870

Left-hand loop IABCI

Δ 0 -0.0147 0.0147 0 0 0 0 0

Lemniscate path IABCIDEFI

Δ(×103) 0 -0.156 0.156 0 0 0 0 0

Lemniscate path EFIABCIDE

Δ(×103) -0.020 -0.168 0.141 -0.010 -0.023 -0.015 -0.019 -0.010

Self-intersecting curve ABICDEIFA

Δ -0.0013 -0.0199 0.0183 -0.0007 -0.0015 -0.0010 -0.0012 -0.0007

Changes in price and the wealth of the non-CRP investors (1 and 2) and the CRP investors (3 through 7) corresponding to one excursion around the curves defined in

Figs 6 and 7. The initial price and wealth are chosen to be the same for each scenario.

https://doi.org/10.1371/journal.pone.0207764.t002
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in panel (c) of Fig 8 also demonstrate that investor 1 is the first to act, while investor 3 is the

last to act.

To facilitate interpretation of the above results as well as clearly identify their economic sig-

nificance, we present the percentage change in price and wealth of each investor in Table 3.

Conclusion

We have utilized the multi-group asset flow model of Caginalp and collaborators to examine

the performance of CRP strategies and to better understand the wealth dynamics of both CRP

and non-CRP investors. Similar to the Merton (1971) framework, the asset flow equations we

utilize here form a continuous time model with no transaction costs. We find that if all inves-

tors adhere to CRP strategies, then the wealth of each investor along with the price is constant.

If, however, one investor follows a non-CRP strategy, while all other investors utilize CRP

strategies, then the wealth of each investor as well as the price is no longer constant. Although

the ending wealth (i.e., wealth at the end of each period of the non-CRP investor’s strategy) of

all investors equals the initial wealth, provided that the non-CRP investor follows a cyclic strat-

egy, the wealth trajectories of all investors are not constant. Indeed, the strategy of the non-

CRP investor affects the demand for the asset and may result in a price bubble or a drop in the

price and consequently a rise or a drop in the wealth of each investor.

As noted in the Introduction, several studies have considered the impact of heterogeneous

investor beliefs on price and wealth dynamics via deterministic pricing models. Here we

abstract away from the specific motivation (classical or behavioral) to focus on the impact of

Fig 8. Three non-CRP investors. Dynamics of a market with three non-CRP investors and five CRP investors with

randomly chosen parameters. The non-CRP investors 1, 2, and 3 follow strategies corresponding to the polygonal path

in panel (a), which is traversed as ABCDEFA. Panel (b) shows the price (solid red curve), W1 (dashed green), W2

(dash-dot blue), W3 (magenta circles), and the wealth of CRP investors (thin solid cyan). Panel (c) shows investors’

trading rates versus time. Note that investor 2’s actions follow those of investor 1 and investor 3’s actions follow those

of investor 2.

https://doi.org/10.1371/journal.pone.0207764.g008
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time-dependent trading strategies. In the baseline case, constant trading strategies correspond

to CRPs. Then, by allowing the trading strategy to vary over time, we are able to consider the

wealth dynamics of various scenarios. For example, can a trader with a time dependent strat-

egy increase his/her wealth when all other traders adhere to CRP strategies? Alternately, sup-

pose an investor plans to enter the market for a period of time and then exit the market.

Within the realm of CRP strategies, are there situations in which this investor can be assured

of not losing wealth? The value of our results is two-fold. First, we provide rigorous mathemat-

ical support and explanation for some commonly used strategies and intuitive investment

practices, and second, we provide a framework in which more complicated relations of many

investment strategies can be evaluated and their outcomes described in a quantitative fashion.

Our results compare to (and are consistent with) those of previous studies. Indeed, [28]

provides a robust summary of the literature regarding the 1/n strategy and points out that:

(i) the 1/n strategy is difficult to outperform in a volatile market and (ii) behavioral studies

note the prevalent intuitive use of 1/n strategies in a variety of settings. With respect to the for-

mer point, the authors also show that the 1/n strategy is a rational choice when the investor is

faced with a high degree of model uncertainty. In [34], the authors perform an empirical study

using monthly data for the 30 Fama-French industry portfolios. Employing an out-of-sample

analysis to compare the performance of the 1/n strategy to the Mean-Variance efficient portfo-

lio with the same level of risk, they find that the 1/n strategy outperforms the Mean-Variance

portfolio for smaller portfolios (n< 30), while the Mean-Variance portfolio outperforms for

larger (n>= 30) portfolios. In [35] the 1/n rule was used as a benchmark against which 14

other trading strategies were tested. The authors found that none of these more “sophisticated”

strategies, including a “minimum variance” portfolio strategy in which the only objective was

to minimize the variance of returns (i.e., risk), consistently outperforms the 1/n strategy with

respect to the Sharpe ratio, certainty-equivalent return, or turnover. These results, which relate

a version of the CRP strategy to risk minimization, are similar to the main takeaway of Theo-

rem 6.

We have limited our study to cases in which the strategies of all investors are constant or

periodic with commensurate period. This was done because we are interested in the differ-

ences in investor wealth arising from the investors’ use of distinct trading strategies and not

from an overall increase/decrease in the market price. That is, we focus on the relative transfer

of wealth between investors (due to their choice of strategy) and not the wealth trends com-

mon to all investors. Our results can be generalized to scenarios in which price, and conse-

quently the wealth of all investors, increases monotonically due to a steady change in demand

or supply.

The model can also handle strategies such as the (all-in) “buy and hold” strategy (ki(t) = 1)

as well as a complete exit from the market (ki(t) = 0). It is fairly common for an investor to use

a portion of his cash to buy shares of the asset and then simply hold them along with the

remainder of his cash. We consider this to be a partial buy and hold strategy, which may be

treated as a mixed strategy with ki(t) = 1 applied to part of the investor’s holdings and ki(t) = 0

to the rest. As such, the strategies for both parts of the investor’s holdings fall under the cate-

gory of CRP strategies and our results apply.

Our main result considers two investors (identified as investors 1 and 2) who follow cyclic

non-CRP strategies corresponding to a Jordan curve in the (k1, k2) strategy plane. In that case,

if the curve is traversed in the counterclockwise direction, the ending wealth of investor 1

increases (primarily) at the expense of investor 2. This suggests that if investor 1 is able to

anticipate the action of investor 2, then he may profit at the expense of investor 2. In plain

words, this result corresponds to the commonly accepted notion that it is better to be the first

mover rather than a follower when reacting to trading news/activities. It is noteworthy that in
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the case of two non-CRP investors any CRP investors may gain or lose wealth. Numerical sim-

ulations, though, suggest these losses (or gains) are much smaller than those incurred by the

“trailing” non-CRP investor.

In this study we assume (i) the investors’ trading strategies, ki(t), are continuous and (ii) the

traders’ actions influence the price. Moving forward, we intend to examine the wealth dynam-

ics when these assumptions are relaxed. Indeed, suppose the trading strategies were piecewise-

constant instead of continuous. This might be a truer reflection of actual trading strategies,

where investors update their portfolios on a periodic basis. In addition, suppose the traders

in the market are “small” in the sense of [36], i.e., the traders’ actions do not impact the price.

As [37] find that market depth has increased over the years both at and behind the NBBO

(national best bid and offer), it is reasonable to consider scenarios in which traders are price

takers. That is, for a majority of small investors trades have minimal (if any) effect on market

prices. Consider, for example, traders with small(er) positions trading in highly liquid securi-

ties (e.g., Dow Jones stocks).
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