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Nonlinear dynamics and stability in a multi-group asset flow model

M. DeSantis∗, D. Swigon†, and G. Caginalp‡

Abstract. The multi-group asset flow model for asset price dynamics incorporates distinct motivations, e.g.,
trend and fundamentals (value) and assessments of value by different groups of investors. The
stability and bifurcation properties are established for the curve of equilibria. We prove that if all
trader groups focus on fundamentals, then all equilibria are stable. For systems in which there is one
fundamental and one momentum (trend) group, we establish conditions for stability. In particular,
an equilibrium that is stable becomes unstable as the time scale on which momentum investors focus
diminishes. The computations examine the excursions, which we define as the maximum deviation
in price of the trajectory from its initial price located near the curve of equilibria.

Key words. asset price dynamics, asset flow, momentum, trend, fundamental value, stability of price dynamics

AMS subject classifications. 91G80, 34C60, 34D20, 37N40

1. Introduction. During the past half-century, asset price dynamics have been modeled
within the framework of classical finance which has the efficient market hypothesis as its foun-
dation. As all informed participants have the same public information, the theory stipulates
that there will be widespread agreement on the valuation of the asset [1]. Any imbalances in
orders will be quickly exploited by these investors who, for all practical purposes have infinite
“arbitrage capital” compared to the uninformed investors. Hence, any behavioral biases or
cognitive errors on the part of a group of investors would not alter the price much beyond
adding some noise. The valuation of an asset is subject to change due to a number of factors,
economic, political, natural (e.g. weather), etc. To the trader or investor, these changes in
valuation can be regarded as random processes. Consequently, a typical model of asset prices
involves an equation such as

dP

P
= σdX + µdt (1.1)

where P is the asset price at time t, while X is a normal random variable (mean 0 and variance
1), σ2 is the variance of returns, and µ is the drift (average return), so that µdt is the expected
return on the investment in time dt.

Within this classical model, the role of different groups with distinct assessments of value
or different strategies is marginalized. A measure of stability of a market is expressed in an
averaged form into the variance, σ2. From the perspective of many practitioners, this classical
view is a default theory that is useful only until one can obtain deeper models and link them
to markets quantitatively. There is some limited evidence that an asset that was volatile last
week will be volatile next week. There are also forecasts (though often varying widely) on
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2 Dynamics in an asset flow model

the expected return, µ. Thus, if one has no additional information or insight, a model such as
(1.1) is acceptable in terms of pricing options, for example, or calculating the value at risk.

There are many questions, however, that are left unanswered by this approach. Some of
these have been at the forefront of problems confronting the finance community. For example,
a number of “flash crashes” have occurred recently including the Dow’s 600 point drop in five
minutes on May 6, 2010. From the perspective of classical finance, one would only be able
to say that we have seen a very unusual event. Stepping away from the purely mathematical
model, one can see that such a drop indicates the absence of limit buy orders until the price has
fallen dramatically. Since there was no significant news prior to the abrupt drop, it suggests
that a significant fraction of traders have motivations or strategies beyond long-term valuation.
This also suggests the absence of a large pool of cash that is ready to take advantage of errors
made by less informed investors, contrary to the assumptions of classical finance.

The example above illustrates the need for a theory that (i) considers different groups of
investors with distinct assessments of valuation, rather than trivializing all but one homoge-
neous group; (ii) incorporates the finiteness of assets; (iii) considers different motivations for
trades, e.g., trend-based or momentum trading (defined below). Since the equation (1.1) is
built on a foundation of infinite arbitrage, it would be difficult to add terms to render this
finite. Hence, a different approach is needed.

Within this model the information available on the value of the asset is expressed through

P
(i)
a (t) , where i denotes the Group. Thus, different groups may have distinct assessments of

the value at the same time, t. Moreover, the valuation will be subject to randomness, so that
one can regard it as a stochastic term. In terms of the classical theory, the only source of
change would be through this valuation. Furthermore, since all groups would have the same

public information, they would agree on the valuation, Pa (t) = P
(i)
a (t) . Our main objective

is to examine price dynamics arising from sources other than valuation; hence we focus on

constant P
(i)
a (t) .

Randomness is generally present in many aspects of a market beyond valuation; it is
also manifested in asset levels (e.g., an influx of cash for a particular group), and changes in
motivations due to random events that may inspire or inhibit risk taking, for example. The
presence of noise from these factors means that an equilibrium that is unstable will quickly
depart from this equilibrium point and eventually settle into a stable equilibrium. The issue of
understanding randomness within the context of the asset flow equations (described in Section
2) is discussed further in the Conclusion (Section 5).

The asset flow equations discussed in the next section are based on a modeling approach
that incorporates these ideas naturally. Each group of investors is endowed with a set of assets
(shares in a single stock or index, plus cash), its assessment of valuation, and motivations
such as buying due to undervaluation or rising prices (momentum). Other motivations are
also easily included in these equations, though we restrict ourselves to those two in this paper.
The different groups participate in a single market where price changes are governed by supply
and demand for the stock.

The system of equations we study is based on the approach of Caginalp and collaborators
since 1990 (see [5] for references) and involves coupled ordinary differential equations and
algebraic equations. We consider the “closed” system in which the number of shares and cash
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of the entire system is fixed. For the multi-group model, this has been developed in [5] and
[10]. In [5] the authors proved the existence of a continuum of equilibria and characterized
the stability. While equilibrium consists of a single point in classical finance, the asset flow
equations permit a curve of equilibria that depends on the parameters in the system such as
the cash and share endowment of each group, the parameters characterizing their motivations,
etc. In the distinguished limit as (a) all groups have the same assessment of value, (b) the
assets available for arbitrage approach infinity, (c) the motivations of the traders are based
on value alone (not on price history, for example), and (d) explicit randomness is introduced
into the price, one expects that solutions of the asset flow equations will converge to those of
(1.1). A formal argument that this limit is attained has been made in [5]. A rigorous proof
that solutions of the asset flow equations converge, in an appropriate sense, to those of (1.1)
remains a research problem.

In this paper we consider the study of the stability and bifurcation properties of the
curve of equilibria. We find that in a system comprised of G purely fundamental traders
there is a G-1 dimensional manifold of equilibrium states and all equilibria are stable with
respect to any perturbation away from the equilibrium manifold (Theorem 3.5). Although
the equilibrium price is in a narrow range defined by the extremes of equilibrium prices of
individual groups (if trading alone) (Theorem 3.4), the equilibrium cash and shares of each
group can range anywhere between zero and the maximum amount. As a result, there is an
inherent natural indeterminacy of the equilibrium price which may result in price fluctuations
and drift. In the simplest case of fixed trading preferences the equilibrium price, cash, and
shares are determined by the initial condition (Theorem 3.2). In addition, we find that the
presence of a group with trend-based trading preferences leads to destabilization of equilibria
in a way that is characterized by Theorem 3.7.

One of our goals is an aspect of stability that is crucial in practice, but is often neglected
in theoretical studies. Upon perturbation, a point that is an unstable equilibrium moves away
from the initial point. Stability studies often focus on the initial rate of change. However, from
the point of view of finance, the important questions are (i) what is the stable equilibrium at
which the solutions (in particular the price) settles, and (ii) what is the maximum deviation of
the price from the initial value on the path to the stable value. We call this the “excursion,”
and note that it is a crucial concept since many financial events are triggered by a large
deviation in price, rather than the ultimate settling point.

From the perspective of finance, some important issues involve the dependence of the
maximum excursion and the new (stable) equilibrium on the parameters in the system, and
how a stable point can become unstable as parameters of the system vary. In the example of
the flash crash discussed above, a relatively steady S&P 500 index value appeared to become
unstable without any apparent cause. One mechanism for this may be a gradual changing
of parameters (e.g., a decrease in the time scale of interest for momentum traders [6]) that
moves the stable equilibrium value to an unstable one. If the resulting excursion is small,
the transition in the equilibrium points would not attract much attention. However, if this
excursion is large relative to the historical variance, then the transition can become very
significant in terms of markets. For example, if the market is at a stable equilibrium, and the
relative fraction of traders using short term momentum strategies increases, in the absence of
any changes in valuation, then the system can move from a stable to an unstable equilibrium.
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The magnitude of the excursion would then depend on a number of factors such as the liquidity
value (which we define as the ratio of total cash in the system to the total asset value) relative
to the fundamental value. We present a systematic and rigorous analysis of the stability
of these asset flow equations, and introduce the concept of excursions, which we define in
terms of maximum price deviation from the initial price (near the curve of equilibria) as the
trajectory moves from an unstable point to a stable one, i.e. it equals maxt(|P (t)− P (0)|).

This paper is organized as follows. In Section 2 we present the mathematical model.
Section 3 features theoretical results such as conditions for equilibrium and stability. Section
4 presents numerical results including excursions from unstable to stable equilibria. While
the vast majority of analysis in dynamical systems focuses on the initial onset of stability,
the ultimate magnitude of the deviation from the curve of equilibria is of great importance in
many applications. In the conclusion (Section 5) we discuss the implications of our results in
terms of finance, and directions for future research.

2. Model. As noted above, we consider the model developed and refined by Caginalp and
collaborators (see [5] and the references therein). This model is based upon the flow of cash
and shares between investor groups. These groups make investment decisions based upon
nonclassical motivations, such as the recent trend in price1, as well as the typical rationale of
the trading price’s deviation from the fundamental (intrinsic) value. For G investor groups
this model2 has the form

dP

dt
= F − P (2.1)

dN (i)

dt
=
k(i)M (i)

F
−
(

1− k(i)
)
N (i) (2.2)

dM (i)

dt
= −k(i)M (i) +

(
1− k(i)

)
N (i)F (2.3)

with i = 1, 2, ..., G where P is the price of the asset, M (i) is the amount of cash investor group
i has, N (i) is the number of shares group i has, and F is defined as

F =

∑G
i=1 k

(i)M (i)∑G
i=1

(
1− k(i)

)
N (i)

. (2.4)

1[3], [4], and [8] provide empirical support for the inclusion of this factor.
2The derivation of the continuous model (2.1)-(2.3) from its discrete counterpart is given in [5]. In [5] a

timescale parameter, τ , is defined as the relaxation time it takes for a non-equilibrium situation to return to
equilibrium. Thus, this parameter describes the time scale on which traders react to changes in the system.
It is assumed that τ equals the discrete time interval between trading periods. This choice is reflective of an
efficient market in which the market returns to equilibrium in one time period. In this paper we assume τ is set
to one via a rescaling of time. As noted in the Conclusion (Section 5), one could utilize optimization methods
(see [14]) to estimate the time scale for readjustment to equilibrium and hence determine the time interval
represented by the trajectories. Note that the parameter values utilized in Section 4 are consistent with the
results of [14]. Further, this time scale and the c

(i)
j (defined later in this section) parameter values may vary

considerably from one market to another. As the purpose of this paper is to study stability properties of this
model in a general framework, we leave the establishment of a stronger connection between this model and real
world markets as a research problem.
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Dividing both sides of equation 2.1 by P yields

1

P

dP

dt
= F/P − 1. (2.5)

The right hand side of equation (2.5) may be interpreted as excess demand (see [5]). Thus, in
this model the relative change in price is proportional to excess demand, a common microe-
conomic principle (see [16] and [22]).

The time-dependent function k(i) denotes the transition rate from investor group i holding
cash to holding shares [7]. Alternately, it may be thought of as the proportion of cash investor
group i submits for purchase of the asset, while k̃(i) corresponds to the proportion of shares
the investor group sells. We set k̃(i) = 1− k(i) in this article and assume 0 < k(i) < 1.

The system (2.1)-(2.4) has two conserved quantities, namely the total amount of cash∑G
i=1M

(i) = M0 and the total number of shares
∑G

i=1N
(i) = N0. Throughout this paper

we assume there is no borrowing of cash or shorting of shares. Hence, we have the following
assumption: M (i) and N (i) are non-negative and less than M0 and N0, respectively. A key
quantity, discussed in [2] and [5], is the ratio L = M0/N0, termed the liquidity value3. We
rescale the system, representing the rescaled variables in boldface type; i.e., N(i) = N (i)/N0,
M(i) = M (i)/M0, P = P/L, and F = F/L, yielding

dP

dt
= F−P (2.6)

dN(i)

dt
=
k(i)M(i)

F
−
(

1− k(i)
)
N(i) (2.7)

dM(i)

dt
= −k(i)M(i) +

(
1− k(i)

)
N(i)F (2.8)

where

F =

∑G
i=1 k

(i)M(i)∑G
i=1

(
1− k(i)

)
N(i)

. (2.9)

Given this rescaling and the above assumption regarding the absence of borrowing and short-
ing, we assume throughout the remainder of this paper that M(i) ∈ [0, 1] and N(i) ∈ [0, 1].
Note that, in view of the conservation of the total number of shares and cash and the positivity
of k(i), one has F > 0. Also, note that the equations (2.7) and (2.8) together yield

F
dN(i)

dt
+
dM(i)

dt
= 0. (2.10)

3In [2] the authors showed that the equilibrium price for a single investor group model with both fundamental
and trend-based trading preferences (see below for definitions) must lie between the fundamental value of the
asset and this liquidity value. Analogously, in [5] it was shown that in the case of two groups, one with
fundamental trading preference and the other with trend-based preference, the system (2.1)-(2.4), (2.14),
(2.16), and (2.17) has a range of stable and unstable equilibria with price value between the fundamental
(intrinsic) value of the asset and the liquidity value. Note the authors in [5] assumed tanh (x) ' x and did
not rescale by L.
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The basic exchange laws (2.6)-(2.9) are complemented by a set of equations for k(i). The

k(i) are defined by the sentiment functions ζ
(i)
j (t), which reflect traders’ motivation and can

be functions of many different factors, such as the discount from valuation (i.e., the classical
motivation), the recent price trend, the relation between the current price and the trader’s

purchase price or recent high price, etc. In order to obtain a closed system of equations, ζ
(i)
j (t)

should be functions of the variables N(i), M(i), P, F, ζ
(i)
j (t) and their derivatives. Throughout

this paper we will focus on the two basic motivations:

1. Trend-based traders:

ζ
(i)
1 (t) = q

(i)
1 c

(i)
1

∫ t

−∞
e−c

(i)
1 (t−τ) 1

P(τ)

dP(τ)

dτ
dτ (2.11)

2. Fundamental (value-based) traders:

ζ
(i)
2 (t) = q

(i)
2 c

(i)
2

∫ t

−∞
e−c

(i)
2 (t−τ)P

(i)
a (τ)−P(τ)

P
(i)
a (τ)

dτ , (2.12)

where q
(i)
j represents the magnitude of the effect, i.e. how strongly investor group i is affected

by motivation j. The negative exponential multiplying the time elapsed in equation (2.11)
reflects the notion that individuals weight recent events more strongly than past events ([15]).
In addition, this factor also helps to smooth historical data so that large spikes do not alter

these values abruptly. The c
(i)
1 parameter corresponds to the inverse of the time scale of

interest, i.e. if group 1 is interested in the recent trend in price over the past 10 days, then

c
(1)
1 is 1/10.

As described in [2], the fundamental trading group makes decisions to buy/sell based
upon the relative difference between the current asset price and its assessment of the asset’s

fundamental value, i.e. (P
(i)
a (t) − P(t))/P

(i)
a (t) where P

(i)
a = P

(i)
a /L is investor group i’s

estimate of the fundamental value. As different investors within the fundamental group may
take longer to react to changes in this quantity than others, the longer the deviation between
the price and fundamental value persists, the greater the proportion of traders who act on it.
The negative exponential multiplying the time elapsed in equation (2.12) models this delay.

The value 1/c
(i)
2 is the time scale. Thus, a large c

(i)
2 indicates that group i reacts quickly to

changes in the relative deviation between price and fundamental value.4

These sentiment functions were first introduced in [7]. As one investor group may be

influenced by multiple motivations, the ζ
(i)
j are summed over all motivations, i.e.

ζ(i) =
K∑
j=1

ζ
(i)
j . (2.13)

4Throughout the remainder of this paper we assume c
(i)
j > 0 and q

(i)
j > 0.
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In this paper we will restrict our focus to homogeneous investor groups, i.e. each group is
affected by only one sentiment. Thus, the subscript identifying the specific sentiment will only
be included as necessary. The relationship between the sentiment functions and the trading
proportions is given via a monotone increasing function that maps (−∞,∞) onto (0, 1) and
obeys h(0) = 1/2, such as, for example:

k(i) = h
(
ζ(i)
)

=
1

2

[
1 + tanh

(
ζ(i)
)]

. (2.14)

The form of the equations (2.11) and (2.12) allows us to write
dζ

(i)
j

dt as functions:

dζ
(i)
j

dt
= ψ(i)

(
F,P, ζ

(i)
j

)
. (2.15)

In particular, the differentiation of equations (2.11) and (2.12) with respect to the variable t
yields

dζ
(i)
1

dt
= c

(i)
1

[
q
(i)
1

1

P

dP

dt
− ζ(i)1

]
= c

(i)
1

[
q
(i)
1

F−P

P
− ζ(i)1

]
. (2.16)

and

dζ
(i)
2

dt
= c

(i)
2

[
q
(i)
2

P
(i)
a −P

P
(i)
a

− ζ(i)2

]
(2.17)

which, together with equations (2.6)-(2.9) and (2.14) form a closed system of equations for

(P,N(i),M(i), ζ
(i)
j )(t).

The wealth, w(i) := M (i) +N (i)P , of each investor group (rescaled by the total amount of
cash, M0) is defined as

W(i) := M(i) + N(i)P. (2.18)

In view of the conservation relations for shares and price, i.e.

G∑
i=1

N(i) = 1,

G∑
i=1

M(i) = 1, (2.19)

we have
G∑
i=1

W(i) = 1 + P. (2.20)

3. Analytical Results.
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3.1. Fixed Trading Preferences. For illustrative purposes let us first examine the dynam-
ics of a simplified system in which k(i) are assumed to be constant. This is an approximation
to the situation, for example, when the price trend is near zero, the valuation is not changing,
and the trading volume is such that the cash position relative to the wealth in the stock is
not changing significantly.

The dynamics of the system with fixed k(i) is simplifed by the fact that F is constant
along any trajectory:

Lemma 3.1. If k(i) = const, then the dynamics of the system (2.6) - (2.8) obeys dF(t)/dt =
0

Proof. By definition

F =

∑G
j=1 k

(j)M(j)∑G
j=1 k̃

(j)N(j)
.

Differentiating with respect to time yields

dF

dt
=

∑G
j=1 k̃

(j)N(j)
∑G

j=1 k
(j)Ṁ(j) −

∑G
j=1 k

(j)M(j)
∑G

j=1 k̃
(j)Ṅ(j)[∑G

j=1 k̃
(j)N(j)

]2
=

∑G
j=1 k

(j)
(
Ṁ(j) + Ṅ(j)F

)
− F

∑G
j=1 Ṅ

(j)

1−
∑G

j=1 k
(j)N(j)

= 0.

Note that the last equality follows from equation (2.10) and the conservation laws (2.19).

It follows from Lemma 3.1, (2.6), and the definition of F that F = Peq where the equilib-
rium price Peq is determined by the initial conditions and trading preferences as

Peq =

∑G
j=1 k

(j)M(j)(0)∑G
j=1

(
1− k(j)

)
N(j)(0)

. (3.1)

Note that Peq is independent of the initial price P(0).

Another consequence of Lemma 3.1 is that the system (2.6) -(2.8) splits into G + 1 sub-
systems of equations, the first being a single equation for the price: Ṗ = Peq − P with the
solution

P(t) = Peq + (P(0)−Peq) e
−t. (3.2)

Each of the remaining subsystems is a system of two equations (2.7)-(2.8) with fixed i and
with F = Peq. The equation (2.10) implies that Ṁ(i) + Ṅ(i)Peq = 0 for each i which can be
integrated to obtain a condition on the trajectory

(
M(i)(t),N(i)(t)

)
M(i) (t) + N(i) (t)Peq = M(i) (0) + N(i) (0)Peq. (3.3)
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The equilibrium values (M
(i)
eq ,N

(i)
eq ) corresponding to a given initial condition can be found by

solving for each i a system of two linear equations, namely the equilibrium version of (3.3),
and

k(i)M(i)
eq −

(
1− k(i)

)
N(i)
eqPeq = 0, (3.4)

which follows from (2.8). The solutions are

N(i)
eq = k(i)

(
M(i) (0)

Peq
+ N(i) (0)

)
(3.5)

and

M(i)
eq =

(
1− k(i)

)(
M(i) (0) + N(i) (0)Peq

)
. (3.6)

Substitution of (3.3) into (2.7) and (2.8) then implies that

dN(i)

dt
= N(i)

eq −N(i) (3.7)

dM(i)

dt
= M(i)

eq −M(i) (3.8)

i.e.,

N(i)(t) = N(i)
eq +

(
N(i)(0)−N(i)

eq

)
e−t (3.9)

M(i)(t) = M(i)
eq +

(
M(i)(0)−M(i)

eq

)
e−t (3.10)

which completes the solution of the system. Note that the formulas (3.5)-(3.6) imply that the
equilibrium values obey (3.1) and the constraints (2.19), as long as the initial conditions obey
(2.19) as well.

We have proven the following result.

Theorem 3.2. For a system composed of traders governed by (2.6)-(2.8) with fixed k(i), the

set E of equilibrium points is the set of all points (Peq,M
(i)
eq ,N

(i)
eq ) ∈ (0,∞)× [0, 1]2G that obey

G∑
i=1

N(i)
eq = 1,

G∑
i=1

M(i)
eq = 1,

k(i)M(i)
eq −

(
1− k(i)

)
N(i)
eqPeq = 0, i = 1, ..., G.

Each equilibrium in E is asymptotically Lyapunov stable and attracting all trajectories starting
in the set of initial conditions consisting of arbitrary P (0) and of (M(i) (0) ,N(i) (0)) compat-
ible with the relations

Peq =

∑G
j=1 k

(j)M(j) (0)∑G
j=1

(
1− k(j)

)
N(j) (0)

,
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N(i)
eq = k(i)

(
M(i) (0)

Peq
+ N(i) (0)

)
, i = 1, ..., G,

and

M(i)
eq =

(
1− k(i)

)(
M(i) (0) + N(i) (0)Peq

)
, i = 1, ..., G.

Remark 1 The set S of all initial conditions (i.e., trajectories) compatible with a given

equilibrium (Peq,M
(i)
eq ,N

(i)
eq ) is a G+ 1 dimensional hyperplane in (0,∞)× [0, 1]2G defined by

the equations (3.5) and (3.6).

Remark 2 There are important practical situations in which the hypothesis, k(i) =

ζ
(i)
1 + ζ

(i)
2 = const , is satisfied.

(1) Consider a single investor group, Group i. Under suitable conditions on c
(i)
1 , q

(i)
1 , c

(i)
2 ,

q
(i)
2 we can have P (t) and P

(i)
a (t) both varying with time, but remaining equidistant from each

other. For example, suppose they are linearly increasing with P (t) > P
(i)
a (t) so that ζ

(i)
1 > 0

and ζ
(i)
2 < 0 (see Figure 3.1). As these are constant, so is their sum, k(i). In practical terms

this means that an overvalued situation in which prices are rising steadily with valuation is
stable. This is often observed in markets, in that an overvalued stock whose fundamentals
are steadily improving together with price can continue until the situation changes, e.g., a
downturn in fundamentals.

(2) A more surprising situation is that in which the price, P (t) , is increasing and concave

downward, while P
(i)
a (t) is decreasing and concave upward (see Figure 3.1). At first glance,

this seems to be a dangerously unstable situation since the price is deviating more and more

from the valuation. However, ζ
(i)
1 is positive and increasing in time, while P

(i)
a (t) is decreasing

in time (whether initially positive or negative). This means that with suitable parameters
characterizing the investor populations, e.g., comparable time scales and magnitudes for trend
and valuation, the two components in sentiment can neutralize one another, and the conditions
of the theorem would be satisfied, leading to stability.

3.2. Variable Trading Preferences. We now consider the more general situation in which
the trading preferences are variable such as in the motivations in (2.11) and (2.12). Recall
that k(i) = h

(
ζ(i)
)

where h is a monotone increasing function, and suppose that

ζ̇(i) = ψ(i)
(
F,P, ζ(i)

)
. (3.11)
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$ 

Time 

P(t) 

Pa
(i)(t) 

$ 

Time 

P(t) 

Pa
(i)(t) 

Figure 3.1. Practical scenarios for Theorem 3.2. The figure on the left shows P (t) > Pa(t), both mono-
tonically increasing and equidistant from each other during the time period. In the figure on the right P (t) is
concave downward and increasing, while Pa(t) is decreasing and concave upward. In both situations a suitable
choice of parameter values could lead to one component of the sentiment function canceling the other thereby
satisfying the hypothesis of Theorem 3.2.

An equilibrium (Peq,N
(i)
eq ,M

(i)
eq , ζ

(i)
eq ) of the system (2.6)-(2.9), (3.11) is a solution of the fol-

lowing system of equations with i = 1, ..., G:[
1− h

(
ζ(i)eq

)]
N(i)
eqPeq = h

(
ζ(i)eq

)
M(i)

eq (3.12)

ψ(i)
(
Peq,Peq, ζ

(i)
eq

)
= 0, (3.13)

G∑
j=1

M(j)
eq = 1,

G∑
j=1

N(j)
eq = 1. (3.14)

Suppose we have two distinct investor groups, one comprised of fundamental traders with
sentiment functions (2.12), labeled by indices If , the other trend-based traderswith sentiment

functions (2.11) (labeled with indices It). In this case, (3.13) reduces to ζ
(i)
eq =

q(i)
(
P

(i)
a −Peq

)
P

(i)
a

for i ∈ If and ζ
(i)
eq = 0 for i ∈ It. Moreover, the set of equilibria can be parametrized by the

values of M
(j)
eq as follows:

Theorem 3.3. In a system comprised of fundamental traders (with indices If ) and trend-

based traders (with indices It), the set (Peq,N
(i)
eq ,M

(i)
eq , ζ

(i)
eq ) of equilibrium solutions is in

one-to-one correspondence with the set

S =

{
(M(1)

eq , ...,M
(G)
eq ) ∈ [0, 1]G

∣∣∣∣∣
G∑
i=1

M(i)
eq = 1

}
.

Proof. Suppose (M
(1)
eq , ...,M

(G)
eq ) ∈ S. By expressing N

(j)
eq from equations (3.12) and

substituting into the conservation formula for total number of shares one obtains the condition

Q (Peq) =

G∑
i=1

N(i)
eq = 1, (3.15)
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where

Q (P) =
∑
i∈If

h

(
q(i)

(
P

(i)
a −P

)
P

(i)
a

)
M

(i)
eq[

1− h

(
q(i)

(
P

(i)
a −P

)
P

(i)
a

)]
P

+
∑
i∈It

M
(i)
eq

P
. (3.16)

Since h

(
q(i)

(
P

(i)
a −P

)
P

(i)
a

)
is a monotone decreasing function of P, Q (P) is monotone decreasing

in P for all P. Furthermore, Q (P)→ 0 as P→∞ and Q (P)→∞ as P→ 0. It follows that

the equation Q (P) = 1 has a unique solution Peq > 0. The values N
(j)
eq can be computed

from (3.12), i.e.,

N(i)
eq =

h(ζ
(i)
eq )M

(i)
eq[

1− h
(
ζ
(i)
eq

)]
Peq

, i ∈ If (3.17)

N(i)
eq = M(i)

eq /Peq, i ∈ It (3.18)

It follows that N
(i)
eq are non-negative for all i and hence, in view of (3.15), 0 ≤ N

(i)
eq ≤ 1. Thus

any point in S defines a unique equilibrium of the system. Conversely, for any equilibrium

one has (M
(1)
eq , ...,M

(G)
eq ) ∈ S.

A result analogous to Theorem 3.3 states that equilibria can also be parametrized by the

values of N
(i)
eq . The corresponding equation to solve for Peq is then

1 = Q̃ (P) =
G∑
i=1

M(i)
eq

=
∑
i∈If

[
1− h

(
q(i)

(
P

(i)
a −P

)
P

(i)
a

)]
P

h

(
q(i)

(
P

(i)
a −P

)
P

(i)
a

) N(i)
eq +

∑
i∈It

N(i)
eqP.

In some situations it may be of importance to determine the range of equilibrium prices
that can be attained as one traverses the set of equilibria of a given system. Let P(i) be the
equilibrium price of investor group i corresponding to the singular situation in which all other

investor groups are absent from the system, i.e., M
(j)
eq = N

(j)
eq = 0 for all j 6= i. In the case of

a system comprised of two distinct investor groups,

h

q(i)
(
P

(i)
a −P(i)

)
P

(i)
a

 =
P(i)

1 + P(i)
, i ∈ If (3.19)

P(i) = 1, i ∈ It (3.20)
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One has the following result.

Theorem 3.4. In a system comprised of fundamental traders and trend-based traders, the
range of equilibrium prices in the set of equilibria is

min
i

P(i) ≤ Peq ≤ max
i

P(i).

Proof. In view of Theorem 3.3 any equilibrium of the system can be parameterized by the

values of (M
(1)
eq , ...,M

(G)
eq ) ∈ S. Note that the function Q(P) in (3.16) is a convex combination

of monotone decreasing functions g(i)(P) where

g(i)(P) =

h

(
q(i)

(
P

(i)
a −P

)
P

(i)
a

)
[

1− h

(
q(i)

(
P

(i)
a −P

)
P

(i)
a

)]
P

, i ∈ If (3.21)

g(i)(P) = 1/P, i ∈ It (3.22)

and hence
min
i
g(i)(P) ≤ Q(P) ≤ max

i
g(i)(P) (3.23)

Note that g(i)(P(i)) = 1. Suppose that, contrary to statement of the theorem, Peq < miniP
(i).

By monotonicity of g(j), g(j)(Peq) > maxi g
(j)(P(i)) ≥ 1. In view of (3.23), Q(Peq) ≥

minj g
(j)(Peq) > 1 which is a contradiction with (3.15).

Similarly, if we suppose that Peq > maxiP
(i), we conclude that g(j)(Peq) < mini g

(j)(P(i)) ≤
1 which, in view of (3.23) implies Q(Peq) ≤ minj g

(j)(Peq) < 1 which is also a contradiction
with (3.15). The bounds on Peq are sharp because they can be attained in the singular cases
outlined above.

Next, we consider the stability of the equilibrium (Peq,N
(i)
eq ,M

(i)
eq , ζ

(i)
eq ). Let us denote the

following quantities:

α =

G∑
j=1

k(j)M(j)
eq

β =
G∑
j=1

(
1− k(j)

)
N(j)
eq

v(i) =

(
1− k(i)

)
N

(i)
eq

β

k(i) = h(ζ(i)eq )

θ(i) = h′
(
ζ(i)eq

)
W(i) = M(i)

eq + N(i)
eqP

(i)
eq
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where α is the equilibrium demand and β is the equilibrium supply, i.e., Peq = α/β. Finally,
let δij be the standard delta function.

The linearized dynamics of the system (2.6) - (2.8), (3.11) near equilibrium are determined
by a Jacobian that has the following block diagonal form (notice the order of the variables)

A =


A(1,1) · · · A(1,j) · · · A(1,G+1)

...
...

...

A(j,1) · · · A(j,j) · · · A(j,G+1)

...
...

...

A(G+1,1) · · · A(G+1,j) · · · −1

 (3.24)

where the block matrices are defined for j = 1, ..., G as

A(i,j) =
∂
(
Ṁ(i), Ṅ(i), ζ̇(i)

)
∂
(
M(j),N(j), ζ(j)

) , A(G+1,j) =
∂Ṗ

∂
(
M(j),N(j), ζ(j)

) ,

A(j,G+1) =
∂
(
Ṁ(j), Ṅ(j), ζ̇(j)

)
∂P

.

The matrix A can be transformed into a similar matrix Ã = QAQ−1, which has the same
block-diagonal structure but is more sparse and more amenable to eigenvalue analysis (see
Appendix A):

Ã(j,j) =

0 0 0

0 −
(
1− v(j)

)
β
(
1− v(j)

)
W(j)θ(j)

0 −∂ψ(j)

∂F
1
β2

∂ψ(j)

∂F
W(j)θ(j)

β + ∂ψ(j)

∂ζ(j)

 , 1 ≤ j ≤ G

Ã(i,j) =

0 0 0

0 v(i) −βv(i)W(j)θ(j)

0 −∂ψ(i)

∂F
1
β2

∂ψ(i)

∂F
W(j)θ(j)

β

 , 1 ≤ i, j ≤ G, i 6= j

ÃG+1,j =
[
0 −1/β2 W(j)θ(j)/β

]
, 1 ≤ j ≤ G

and

Ãj,G+1 =

 0
0

∂ψ(i)

∂P

 . 1 ≤ j ≤ G

The trading strategies discussed above imply that ∂ψ(i)

∂F > 0 for trend-based traders and
∂ψ(i)

∂F = 0 for fundamental traders. In addition, ∂ψ(i)

∂P < 0, ∂ψ(i)

∂ζ(i)
< 0, and 0 < θ(i) < 1/2 for

both groups.
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We shall analyze the stability of two important cases: (i) all traders in the group have
fundamental trading preferences and (ii) the group has two traders - one with fundamental
and the other one with trend-based preferences. In both cases Theorem 3.3 implies that the
equilibrium of the system is unaffected by c(i) and therefore we focus our investigation on the
dependence of the stability on c(i).

3.2.1. Case (i): All fundamental traders. Suppose that all traders follow a fundamental
strategy with distinct constants and estimates of the fundamental price, i.e.,

ψ(i)
(
F,P, ζ(i)

)
= c(i)

(
q(i)

P
(i)
a −P

P
(i)
a

− ζ(i)1

)
.

In this case the characteristic polynomial of Ã (and thus A) is given by

pA (λ) = λG det (λI −B)

where the zero eigenvalue of multiplicity G is a consequence of the constraint (2.10) relating
any pair of variables (M(i),N(i)). The matrix B (after a permutation of rows and columns)
is a block diagonal matrix

B =

B(1,1) B(1,2) 0G×1
0G×G B(2,2) B(2,3)

B(3,1) B(3,2) −1


with

B(1,1) =


−
(
1− v(1)

)
· · · v(1) · · · v(1)

...
...

...

v(j) · · · −
(
1− v(j)

)
· · · v(j)

...
...

...

v(G) · · · v(G) · · · −
(
1− v(G)

)

 ,

B(1,2) =



(
1− v(1)

)
βW(1)θ(1) · · · −v(1)βW(j)θ(j) · · · −v(1)βW(G)θ(G)

...
...

...

−v(j)βW(1)θ(1) · · ·
(
1− v(j)

)
βW(j)θ(j) · · · −v(j)βW(G)θ(G)

...
...

...

−v(G)βW(1)θ(1) · · · −v(G)βW(j)θ(j) · · ·
(
1− v(G)

)
βW(G)θ(G)

 ,

B(2,2) =


−c(1) · · · 0 · · · 0

...
...

...

0 · · · −c(j) · · · 0
...

...
...

0 · · · 0 · · · −c(G)

 ,

B(2,3) =
[
−q(1)c(1)/P(1)

a · · · −q(j)c(j)/P(j)
a · · · −q(G)c(G)/P

(G)
a

]T
,
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B(3,1) =
[
−1/β2 · · · −1/β2

]
,

and

B(3,2) =
[
W(1)θ(1)/β · · · W(j)θ(j)/β · · · W(G)θ(G)/β

]
.

In the special case of two fundamental traders we have

B =


−
(
1− v(1)

)
v(1)

(
1− v(1)

)
βW(1)θ(1) −v(1)βW(2)θ(2) 0

v(2) −
(
1− v(2)

)
−v(2)βW(1)θ(1)

(
1− v(2)

)
βW(2)θ(2) 0

0 0 −c(1) 0 −q(1)c(1)/P(1)
a

0 0 0 −c(2) −q(2)c(2)/P(2)
a

−1/β2 −1/β2 W(1)θ(1)/β W(2)θ(2)/β −1


(3.25)

Let C be the 2G× 2G principal submatrix of B defined as

C =

[
B(1,1) B(1,2)

0G×G B(2,2)

]
The matrix C is diagonalizable and has eigenvalues

{
0, − 1, − c(j)

}
, j = 1, 2, ..., G, where the

−1 eigenvalue has multiplicity G − 1. Diagonalization of C for two traders is accomplished
via the left eigenvectors

V =


1 1 0 0

v(2) −v(1) v(2)βW(1)θ(1)

c(1)−1 −v(1)βW(2)θ(2)

c(2)−1
0 0 1 0
0 0 0 1

 .

By applying analogous diagonalization to the full matrix B we obtain the matrix M which
has a mammillary form:

M =

M (1,1) 0G×G M (1,3)

0G×G M (2,2) M (2,3)

M (3,1) M (3,2) −1


where

M (1,1) =

[
0 01×(G−1)

0(G−1)×1 −I(G−1)×(G−1)

]
,

M (2,2) =


−c(1) · · · 0 · · · 0

...
...

...

0 · · · −c(j) · · · 0
...

...
...

0 · · · 0 · · · −c(G)

 ,

M (3,1) =
[
−1/β2 01×(G−1)

]T
,
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and

M (3,2) =
[
W(1)θ(1)/β · · · W(j)θ(j)/β · · · W(G)θ(G)/β

]
.

(The submatrix M (1,3) is not important for stability considerations.) In the case of two
investors

M =



0 0 0 0 0

0 −1 0 0 −v(2) q
(1)c(1)W(1)θ(1)β

P
(1)
a (c(1)−1)

+ v(1) q
(2)c(2)W(2)θ(2)β

P
(2)
a (c(2)−1)

0 0 −c(1) 0 −q(1)c(1)/P(1)
a

0 0 0 −c(2) −q(2)c(2)/P(2)
a

−1/β2 0 W(1)θ(1)/β W(2)θ(2)/β −1


The matrix M has the characteristic polynomial

pM (λ) = (λ+ 1)G−1 λdet
(
λI − M̃

)
where

M̃ =

[
M (3,3) M (3,4)

M (4,3) −1

]
.

In the case of two investors,

M̃ =

 −c(1) 0 −q(1)c(1)/P(1)
a

0 −c(2) −q(2)c(2)/P(2)
a

W(1)θ(1)/β W(2)θ(2)/β −1

 . (3.26)

The single zero eigenvalue of M results from the conservation of the total amount of cash in
the system.

The sign structure of the matrix M̃ is

sgn(M̃) =

[
−IG×G −1G×1
11×G −1

]
. (3.27)

and hence M̃ satisfies the necessary conditions for sign stability of Quirk & Ruppert [20] and
May [18], namely, (i) M̃jj ≤ 0 for all j, (ii) M̃jj < 0 for at least one j, (iii) M̃ijM̃ji ≤ 0 for all
i 6= j, (iv) in the graph associated with M̃ there is no closed path of length 3 or more, and
(v) det(M̃) 6= 0. As a result, one can conclude that M̃ has no eigenvalues with positive real
part. Furthermore, the matrix M̃ satisfies Jeffries sufficient condition (color test) [17] since
every node of the graph associated with M̃ is self-regulating, and hence all eigenvalues of M̃
have negative real parts.

Alternatively, for two fundamental investor groups one can use the Routh-Hurwitz crite-
rion (see [13]) to show that the equilibrium is stable for all positive c(1) and c(2). Indeed,
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set

A2 = c(1) + c(2) + 1,

A1 = c(1)c(2) + c(1)

(
1 +

q(1)W(1)θ(1)

P
(1)
a β

)
+ c(2)

(
1 +

q(2)W(2)θ(2)

P
(2)
a β

)
,

A0 = c(1)c(2)

(
1 +

q(1)W(1)θ(1)

P
(1)
a β

+
q(2)W(2)θ(2)

P
(2)
a β

)

where

pM̃ (λ) = λ3 +A2λ
2 +A1λ+A0

is the characteristic polynomial for M̃ . The Routh-Hurwitz criterion implies that the eigen-
values of M̃ have negative real parts if and only if A2 > 0, A1 > 0, A0 > 0, and A1A2 > A0.
The criteria Aj > 0, j = 0, 1, 2 are clearly satisfied for all positive c(1) and c(2). After
substitution, the final Routh-Hurwitz criterion is equivalent to:

c(1)c(2)
(
c(1) + c(2) + 2

)
+ c(1)

(
c(1) + 1

)(
1 +

q(1)W(1)θ(1)

P
(1)
a β

)

+c(2)
(
c(2) + 1

)(
1 +

q(2)W(2)θ(2)

P
(2)
a β

)
> 0.

which also holds for all positive c(1) and c(2).

We have proved the following result.

Theorem 3.5. In a system composed of traders with pure fundamental trading preferences
every equilibrium is asymptotically stable for all positive c(i), i = 1, ...G, within the class of
trajectories compatible with that equilibrium.

3.2.2. Case (ii): One fundamental trading group and one trend-based trading group.
Consider a system consisting of two trading groups. Group 1 follows a pure trend-based
strategy, while group 2 follows a pure fundamental strategy, i.e.

ψ(1)
(
F,P, ζ(1)

)
= c(1)

(
q(1)

F−P

P
− ζ(1)

)
and

ψ(2)
(
F,P, ζ(2)

)
= c(2)

(
q(2)

P
(2)
a −P

P
(2)
a

− ζ(2)
)

.
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In this scenario we have the following equilibrium solution5

ζ(1)eq = 0 (3.28)

ζ(2)eq = q(2)
Pa−Peq

Pa
(3.29)

k(1)eq = 1/2 (3.30)

k(2)eq = h

(
q(2)

Pa−Peq

Pa

)
(3.31)

Q (Peq) =
M

(1)
eq

Peq
+

h
(
q(2)

Pa−Peq

Pa

)
[
1− h

(
q(2)

Pa−Peq

Pa

)]
Peq

(
1−M(1)

eq

)
(3.32)

= 1.

Due to the assumption of conservation of cash in this system, we set M
(2)
eq =

(
1−M

(1)
eq

)
in

equation (3.32).

We can parameterize this equilibrium solution by the equilibrium price, Peq, to obtain

M(1)
eq =

Peq − (1 + Peq)h
(
q(2)

Pa−Peq

Pa

)
1− 2h

(
q(2)

Pa−Peq

Pa

) (3.33)

N(1)
eq =

Peq − (1 + Peq)h
(
q(2)

Pa−Peq

Pa

)
Peq

[
1− 2h

(
q(2)

Pa−Peq

Pa

)] . (3.34)

The range of values of Peq for which solutions (3.33) and (3.34) stay within (0, 1) depends on
the function h and the constants q(2),Pa. Note that equilibrium is again independent of the
c(i) and therefore it is reasonable to investigate stability of the equilibrium as a function of
these parameters.

The transformed Jacobian Ã in this case has the characteristic polynomial

pÃ (λ) = λ2 det (λI −B)

where after appropriate permutations we have

B =


−
(
1− v(1)

)
v(1)

(
1− v(1)

)
βW(1)θ(1) −v(1)βW(2)θ(2) 0

v(2) −
(
1− v(2)

)
−v(2)βW(1)θ(1)

(
1− v(2)

)
βW(2)θ(2) 0

− c(1)q(1)

αβ − c(1)q(1)

αβ −c(1) + c(1)q(1)W(1)θ(1)

α
c(1)q(1)W(2)θ(2)

α −q(1)c(1)/Peq

0 0 0 −c(2) −q(2)c(2)/Pa

−1/β2 −1/β2 W(1)θ(1)/β W(2)θ(2)/β −1

 .

5As only one group is focused on the valuation (and to simplify notation) we set: Pa := P
(2)
a .
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(Note that the matrix B is identical to that in the case (i) with the exception of the third
line.) With an additional similarity transformation using

R =


1 0 0 0 0
0 1 0 0 0

0 0 1 0 −c(1)q(1)/Peq

0 0 0 1 0
0 0 0 0 1

 .

we obtain B̃ = RBR−1 which resembles matrix B in (3.25):

B̃ =


−
(
1− v(1)

)
v(1)

(
1− v(1)

)
βW(1)θ(1) −v(1)βW(2)θ(2)

c(1)q(1)(1−v(1))β2W(1)θ(1)

α

v(2) −
(
1 + v(2)

)
−v(2)βW(1)θ(1)

(
1− v(2)

)
βW(2)θ(2) − c(1)q(1)v(2)β2W(1)θ(1)

α

0 0 −c(1) 0 −
[
c(1)
]2
q(1)/Peq

0 0 0 −c(2) −c(2)q(2)/Pa

−1/β2 −1/β2 W(1)θ(1)/β W(2)θ(2)/β −1 + c(1)q(1)W(1)θ(1)

α

 .

Specifically, the 2G× 2G principal submatrix of B̃ formed by the rows and columns from 1 to
2G, is identical to the matrix C in the case of all fundamental traders, i.e., it has eigenvalues{

0,−1,−c(1),−c(2)
}

. Diagonalization of B̃ yields the matrix

M =



0 0 0 0 0

0 −1 0 0 − c(1)q(1)v(2)βW(1)θ(1)

(c(1)−1)Peq
+ c(2)q(2)v(1)βW(2)θ(2)

(c(2)−1)Pa

0 0 −c(1) 0 −
[
c(1)
]2
q(1)/Peq

0 0 0 −c(2) −c(2)q(2)/Pa

−1/β2 0 W(1)θ(1)/β W(2)θ(2)/β −1 + c(1)q(1)W(1)θ(1)

α

 .

As before, the characteristic polynomial of M obeys

pM (λ) = (λ+ 1)λdet
(
λI − M̃

)
(3.35)

where

M̃ =

 −c(1) 0 −
[
c(1)
]2
q(1)/Peq

0 −c(2) −c(2)q(2)/Pa

W(1)θ(1)/β W(2)θ(2)/β −1 + c(1)q(1)W(1)θ(1)

α

 . (3.36)

Again, the single zero eigenvalue of M results from the conservation law for total amount
of cash. The differences between the stability properties for the case with two fundamental
trading groups and the current case with one trend-based and one fundamental trading group
boil down to differences between the matrix M̃ here and the one in (3.26).

The first observation about stability of equilibria that we can make is that any equilibrium
of the system is stable for sufficiently small c(1), the inverse time scale of the trend-based
trading group:
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Lemma 3.6.An equilibrium of a system composed of one trading group with trend-based
preference and one with fundamental trading preference is stable for all c(2) within the class
of trajectories compatible with that equilibrium if, for the trend-based group,

c(1) <
α

q(1)W(1)θ(1)
.

Proof. If the hypothesis holds then the matrix M̃ in (3.36) has the sign signature (3.27)
and hence it is sign stable.

A sharper result can be obtained by analyzing the characteristic polynomial of M̃

pM̃ (λ) = λ3 +A2λ
2 +A1λ+A0.

where

A2 = 1 + c(2) + c(1)U

A1 = c(1) + c(2)V + c(1)c(2)U

A0 = c(1)c(2)V.

where we introduced the equilibrium-dependent quantities

U = 1− q(1)W(1)θ(1)

α
(3.37)

V = 1 +
q(2)W(2)θ(2)

βPa
(3.38)

Note that U < 1 and V > 1.

Routh-Hurwitz theory implies that all roots of M̃ have negative real parts if and only if
A2 > 0, A1 > 0, A0 > 0, and A1A2 > A0. The fourth inequality can be rewritten as(

c(1) + c(2)U
)
c(1)c(2)U +

[
c(2)
]2

U +
[
c(1)
]2

V

+ c(1)c(2) (1 + UV + U−V) + c(1)V + c(2) > 0.

Note the following:
1. All four inequalities are satisfied for sufficiently small c(1) and c(2).
2. The first two inequalities are satisfied for all positive c(1) and c(2) if and only if U > 0.
3. All four inequalities hold for all positive c(1) and c(2) if 1 < V < 1+U

1−U .

4. The fourth inequality fails if U ∼ 0, V > 1+U
1−U , c(1) > 1/ (V − 1), and c(2) >

(1+c(1))c(1)V
c(1)(V−1)−1 .

To summarize, we have the following theorem.
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Theorem 3.7. A system composed of one investor group with trend-based preference and
one with fundamental trading preference is stable (within the class of compatible trajectories)
for all c(1) and c(2) at every equilibrium for which the following condition holds

2

(
1− q(1)W(1)θ(1)

α

)
− q(1)W(1)θ(1)

α

q(2)W(2)θ(2)

βPa
> 0.

If the condition fails and if q(1)W(1)θ(1) > α − ε at an equilibrium with ε > 0 sufficiently
small, then there exist c(1) and c(2) for which that equilibrium is unstable.

In [5] the authors studied a variation of this two group model in which the y = tanh(x)
function was approximated by y ' x for −1 < x < 1.

4. Numerical Results. In this section we study numerically the dynamics of the conserved
two-group system (2.6)-(2.8); (2.16) and (2.17), where Group 1 is focused solely on the recent
trend in price and Group 2 is focused solely on the price’s relative deviation from its funda-
mental value6. In [5] the criteria for stability of the approximated system, i.e. tanh (x) ' x,
were determined numerically. The computations in that paper showed the existence of a sta-
bility threshold price, Ptr

eq, where the stability of the equilibrium changed as the price moved
through this value with other parameters held fixed. It was confirmed for several parameter
regimes (in [12]) that the linearized system had two strictly negative eigenvalues, a zero eigen-
value, and a pair of purely imaginary eigenvalues at this price, Ptr

eq. In this section we focus
on the full (non-approximate) system and consider the following aspects of the dynamics:

1. The simulations indicate that trajectories starting near unstable equilibrium points
terminate near stable equilibria. We observe that as the trajectory starting points approach
Ptr
eq from the unstable side, the ending points move toward Ptr

eq from the stable side. Thus,
a plot of the ending price versus the beginning price mirrors the line y = x when the starting
price is near a stable equilibrium and appears to be a monotone decreasing function of the
starting price (P (0)) once P (0) > Ptr

eq, i.e. once P (0) is near an unstable equilibrium.

2. Just as important as the trajectory’s ending price is the excursion which the trajectory
experiences as it attains this point. We define the excursion as the maximum deviation in
price from the trajectory’s initial price near the curve of equilibria. While the starting and
ending prices may be close to one another, it is evident that the prices along the trajectory
may deviate significantly from these values. We track the maximum and minimum prices
attained along the trajectory and plot them on a log scale to facilitate comparisons. This is
particularly relevant given recent events, i.e. the housing bubble/bust episode and subsequent
market turbulence during 2008-2009 and the European debt crisis of 2011. These maximum
and minimum prices, which can vary drastically from the initial price, are indications that
this model may be utilized to study non-classical phenomena like bubbles.

6As in the preceding section(s), we utilize the simplified notation: q1 := q
(1)
1 ; q2 := q

(2)
2 ; c1 := c

(1)
1 ; c2 := c

(2)
2 ;

and P
(2)
a = Pa.
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It is also interesting to note what happens to each trading group’s assets, hence its wealth,
as the price evolves over time. Figures 4.8 and 4.13 contain plots of the trend-based trading
group’s shares and cash levels versus time7 as well as logarithmic plots of Group 1’s wealth
and the price versus time8. As all equilibria are stable in Case 1, these figures are omitted.

Finally, we consider the eigenvalues of the linearized system to better understand the
trajectories’ dynamics. As noted above (and in [5]), the linearized system admits a 0 and a
−1 eigenvalue. The remaining three eigenvalues are discussed.

This analysis is achieved by assigning practical9 values to certain parameters. In this
section we will restrict our attention to three representative cases:

(1) Small magnitudes for the motivations and one unit time scales for both groups (q1 =
q2 = 1, c1 = c2 = 1);

(2) Small motivation magnitude for the momentum group; large motivation magnitude for
the fundamental group; and shorter time scales for both groups (q1 = 1, q2 = 5, c1 = c2 = 5);
and

(3) Large magnitudes for the motivations and shorter time scales for both groups (q1 =
q2 = 5, c1 = c2 = 5). We restrict each case to the scenario Pa = 0.8 < Peq < 1.

In the computations displayed in Figures 4.1, 4.4, and 4.9 the curve of equilibria is plotted
as the union of green and red points, where the green points correspond to stable and the red
unstable equilibria.

Case 1. q1 = q2 = 1, c1 = c2 = 1
In the computations displayed in Figure 4.1 all equilibrium points are stable. This figure

also contains five sample trajectories10 which begin at the points labeled “1B”, “2B”, ..., “5B”
and end at the points labeled “1E”, “2E”, ..., “5E.”

Figure 4.2 plots 100 average (trajectory) ending prices versus average beginning prices.
To produce this figure the curve of equilibrium points was discretized into 100 points. Then,
five starting points were randomly selected about each equilibrium point. The Matlab ode23s
function was utilized to solve the system. The five starting (alternately ending) prices are
then averaged for each equilibrium point and plotted. As all equilibrium points are stable,
the trajectory ending points lie on the line y = x, which is represented by the green line in
Figure 4.2.

Figure 4.3 verifies that all permissible equilibrium points, i.e. those satisfying the assump-
tions (i) 0 < M(i) < 1, (ii) 0 < N(i) < 1, and (iii) 0 < Pa < 1, are stable as the real parts

7As assets are conserved and the system has been rescaled, in order to compute the value of the fundamental
trading group’s cash, for example, simply subtract the trend-based trading group’s cash level from one.

8Logarthmic plots are utilized for the price and wealth figures to facilitate comparison of the different
trajectories.

9Previous studies, [9] and [14], obtained practical values for the qi and ci based upon optimization (using
closed-end fund data) and statistical (using experimental data) methods. The parameter values utilized in
this section are consistent with these previous findings.

10The trajectories in Figures 4.1, 4.4, and 4.9 are color-coded as follows: 1-blue, 2-red, 3-cyan, 4-magenta,
and 5-black.
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Figure 4.1. Examples of five trajectories for Case 1. The curve represents the permissible range (i.e.
0.86022 ≤ Peq < 1) of equilibrium prices, while the color green indicates these equilibria are stable. The five
marked points correspond to trajectories that begin (and therefore terminate) near these stable equilibria.
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Figure 4.2. Average equilibrium price versus the starting price over 100 trajectories. Note that since all
trajectories start near stable equilibria the ending points lie along the line y = x (denoted in green).

(blue curves) of the pair of complex eigenvalues are strictly negative. The remaining three
eigenvalues are 0, −1, and −1. Thus, in this case four of the eigenvalues have negative real
parts and the last eigenvalue is a 0 due to the curve of equilibria.

While there exists a range of possible equilibrium prices, i.e. 0.86022 ≤ Peq ≤ 1, the
solution trajectories quickly move to equilibrium. Thus, the starting and ending prices are
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Figure 4.3. Eigenvalues of the Jacobian of the system in Case 1 versus equilibrium price. Three of
these eigenvalues are {0,−1,−1}, and the remaining two form a complex conjugate pair. The real (blue) and
imaginary (green and red) parts of this pair are plotted in this figure. As the real parts (blue curve) of these
eigenvalues are less than zero, all equilibrium points in this scenario are stable.

essentially identical. However, by changing the parameter values these trajectories behave in
a much different manner.

Case 2. q1 = 1, q2 = 5, c1 = c2 = 5

Figure 4.4 shows the (red/green) curve of (unstable/stable) equilibrium points for the
parameter set: q1 = 1, q2 = 5, and c1 = c2 = 5. In this case all five trajectories start near
unstable equilibrium points and terminate near stable equilibria.

Figure 4.5 shows a stability transition price, Ptr
eq, of approximately 0.835. This is consis-

tent with the point where the red and green points meet in Figure 4.4. Note that in Figure
4.5 the curve rises along the line y = x and then monotonically decreases as the equilibrium
points about which the trajectories are starting become unstable.

Unlike the dynamics in Case 1, the trajectories in Figure 4.4 do not stay near the curve of
equilibria. Instead they deviate significantly from this curve. The maximum and minimum
prices attained along each trajectory are plotted in Figure 4.6. In this figure the black and red
points correspond to maximum and minimum prices attained when the initial price movement
was positive, i.e. P (2) > P (1). The blue and green points correspond to maximum and
minimum prices when the initial price movement was negative. Note the following points:

1. Initially, the maximum and minimum values coincide until approximately the stability
transition price, Ptr

eq = 0.835, is reached. These points correspond to stable equilibria.

2. For the initial price greater than 0.835 the minimum (red and green) values appear to
monotically decrease along the same curve. However, the maximum values do not appear to
adhere to a discernible pattern. Rather they appear to follow a distribution. Contrast this
figure with Figure 4.11 from Case 3.

Figure 4.7 plots the complex pair of eigenvalues for this case. The final eigenvalue is −5.
Thus, consistent with the other figures for this case the stability transition price appears to
be approximately 0.835 as this is where the blue curve in Figure 4.7 becomes positive.

The four subfigures within Figure 4.8 show the evolution of Group 1’s assets over time.
Each plot contains five curves which correspond to the five trajectories in Figure 4.4 (color
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Figure 4.4. Examples of five trajectories for Case 2 that begin near unstable equilibria. The green curve
shows the location of stable equilibria while the red curve shows the location of unstable equilibria. The permis-
sible range of equilibrium prices is 0.81624 ≤ Peq < 1.
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Figure 4.5. Plot of average trajectory ending price (red dots) versus starting price. In this case the
transition price between stable and unstable equilibrium points, Ptr

eq, is approximately 0.835. For P(0) < Ptr
eq

the trajectories start near stable equilibria and their end points lie along the line y = x (denoted in green). For
P (0) > Ptr

eq the trajectories start near unstable equilibria, and their end points decrease monotonically with
P(0).

coded). It appears that a larger initial outlay of cash for Group 1 leads to a larger maximum
price (consistent with experimental results, see [11]). Also, it seems that as the price increases,
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Figure 4.6. Plot of maximum and minimum prices attained along solution trajectories. The black and red
points (often overlapped by green points) correspond to maximum and minimum values, respectively, provided
the initial price movement was positive, i.e. P′ (0) > 0. Similarly, the blue and green points correspond to
maximum and minimum values, respectively, provided the initial price movement was negative.
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Figure 4.7. Eigenvalues of the Jacobian of the system in Case 2 versus equilibrium price. The blue curve
corresponds to the real parts of the eigenvalues, while the red and green curves correspond to the imaginary
parts. Consistent with Figures 4.4, 4.5, and 4.6 it appears the real parts of the eigenvalues become positive
at approximately Peq = 0.835. As the remaining three eigenvalues are {0,−1,−1}, this indicates stability for
Peq < 0.835 and instability for Peq > 0.835.

the cash supply of Group 1 decreases while its share level increases. As the price falls, however,
both the cash and number of shares of Group 1 decrease in an oscillatory fashion. Thus, while
Group 1’s wealth is at a maximum near the peak of the price trajectory, it falls as the price
decreases to its new equilibrium value.

Case 3. q1 = 5, q2 = 5, c1 = c2 = 5

Figure 4.9 shows the (red/green) curve of (unstable/stable) equilibrium points for the
parameter set: q1 = 5, q2 = 5, and c1 = c2 = 5. Similar to Figure 4.4 all five trajectories
start near unstable equilibrium points and terminate near stable equilibria. The stability
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Figure 4.8. Plots of Group 1’s assets and wealth versus time along with the price versus time. Each figure
contains five color coded curves corresponding to the five solution trajectories in Figure 4.4. Each subfigure
only includes the first 25 time units. After this the trajectory is close to equilibrium.

transition price, Ptr
eq, is approximately 0.818.

In Figure 4.10 the curve very briefly rises along the line y = x and then monotically
decreases as the equilibrium points about which the trajectories originate become unstable.
Note that most permissible equilibria in this scenario are unstable.

The maximum and minimum prices attained along each trajectory are plotted in Figure
4.11. In this figure the black and red points correspond to maximum and minimum prices
attained when the initial price movement was positive, i.e. P (2) > P (1). The blue and
green points correspond to maximum and minimum prices when the initial price movement
was negative. Note the following points:

1. Initially, the maximum and minimum values coincide until one nearly reaches the
stability transition price, Ptr

eq = 0.818. These points correspond to stable equilibria.

2. From P = 0.818 to approximately 0.835 the maximum and minimum values separate,
though there is no discernible difference between the black and blue points (both corresponding
to maximum values) or the red and green points (corresponding to minimum values).

3. For the initial price greater than 0.835 the maximum values separate into two curves.
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Figure 4.9. Examples of five trajectories for Case 3 that begin near unstable equilibria. The green curve
shows the location of stable equilibria while the red curve shows the location of unstable equilibria. The permis-
sible range of equilibrium prices is 0.81624 ≤ Peq < 1.
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Figure 4.10. Plot of average trajectory ending price (red dots) versus starting price. Note that in the range
shown no trajectories start near a stable equilibrium point. The line y = x is denoted in green.

Similarly, the minimum values also separate. Note that the larger (or higher) maximum and
minimum curves correspond to a positive initial price movement. Alternately, the blue and
green curves, corresponding to the maximum and minimum values for a negative initial price
movement, are lower. Compare this figure with Figure 4.6 in Case 2.

As in the above cases a plot of the pair of complex eigenvalues is presented in Figure 4.12.
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Figure 4.11. Plot of maximum and minimum prices attained along solution trajectory. The black and
red points correspond to maximum and minimum values, respectively, provided the initial price movement was
positive, i.e. P′ (0) > 0. Similarly, the blue and green points correspond to maximum and minimum values,
respectively, provided the initial price movement was negative.
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Figure 4.12. Eigenvalues of the Jacobian of the system in Case 3 versus equilibrium price. The red and
green curves correspond to the imaginary parts of the two eigenvalues. Note that as Peq increases through
approximately 0.824 the imaginary parts become zero leaving a pair of real, positive eigenvalues (blue and
orange curves). These curves coincide until approximately Peq = 0.824. As the remaining three eigenvalues
are {0,−1,−1}, this plots suggests we have stability for Peq < 0.818, which is consistent with Figures 4.9, 4.10,
and 4.11.

Similar to Figure 4.8, the four subfigures within Figure 4.13 show the evolution of Group
1’s assets over time. Each plot contains five curves which correspond to the five trajectories
in Figure 4.9 (color coded). Again, larger initial cash levels for Group 1 correspond to larger
maximum prices. Also, as in Case 2, Group 1’s wealth is at a maximum near the peak of the
price trajectory and falls as the price settles toward a new, lower equilibrium value.

Thus we have observed two distinct dynamical behaviors for the solution trajectories of
this system11.

11The three parameter regimes considered in this section were chosen because they illustrated the different
dynamical behaviors of the system. Other parameter combinations yield variations of these dynamics. For
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Figure 4.13. Plots of Group 1’s assets and wealth versus time along with the price versus time. Each figure
contains five color coded curves corresponding to the five solution trajectories in Figure 4.9. Each subfigure
only includes the first 25 time units. After this the trajectory is close to equilibrium.

5. Conclusion. A key difference between our models and those of classical finance involves
the nature of equilibrium and associated stability properties. Within our asset flow approach,

there is a multi-dimensional manifold of equilibria for each set of valuations, P
(i)
a . In particular,

Theorem 3.3 shows that given a set of valuations P
(i)
a , for any distribution of cash endowments,

M
(i)
eq , there will be a unique equilibrium solution that specifies the price, Peq, and the share

distribution, N
(i)
eq . Thus there exists a curve of equilibria even if all participants agree

on valuation. If all participants are fundamental traders, then each equilibrium is stable.
Unstable equilibrium is possible with the introduction of momentum traders. This is a central
conclusion that underscores the importance of trading motivations.

The differences in formulation between our approach and classical finance include the

example, shortening the timescale of the trend-based trading group (e.g., setting c1 = 100) in Cases 2 and 3
does not produce a new dynamical behavior. Indeed, the parameter combinations (i) q1 = 1, q2 = 1, c1 = 100,
c2 = 1,(ii) q1 = 1, q2 = 5, c1 = 100, c2 = 5, and (iii) q1 = 5, q2 = 5, c1 = 100, c2 = 5 result in behaviors similar
to Case 3 above, i.e. plots of maximum and minimum prices along solution trajectories and ending price versus
beginning price are similar to those attained in Case 3.
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finiteness of assets, disparate views on valuation, and distinct strategies implemented by
groups of traders. By varying the endowment of the different groups and the parameters
governing their strategies, we obtain a spectrum of solution trajectories. As shown in the
numerical studies, if the initial conditions correspond to an unstable equilibrium, there will
be an excursion that ultimately ends at a stable equilibrium. The computations show the
dependence of the excursions on the parameters of the system. It is also clear from the com-
putations and theoretical results that varying the parameters can change a stable equilibrium
to an unstable one.

The stability of markets has been of great interest to market participants and government
regulators in recent years. The methods of classical finance provide few clues into factors
that might de-stabilize markets. Our methodology is capable of addressing these problems.
The results can be compared with experimental asset markets (e.g., [11], [19], and [21]) which
can test the conclusions. Comparison with world markets would be possible with estimates
of the asset endowments and strategies of market participants. Theory, computations and
asset market experiments can be instrumental in terms of reducing the amount or type of
information needed. The goal would be to confine the information needed on the particular
world market to publicly available numbers. For example, for mutual funds and exchange
traded funds, the ratio of cash to assets is generally a known quantity, as is the inflow of
cash into various sectors of these funds. On the other hand, the motivations of individuals,
even in the aggregate, are more difficult to quantify. In principle it would be very useful to
estimate the parameters involving motivations, since the inflows of cash are slightly lagging
the changes in motivations. In recent months, the “risk appetite” has appeared as a key
factor in markets. When there is relative calm in the financial world, investors who are tired
of bond dividends below inflation tend to flock to riskier assets such as stocks, oil, etc. Thus
the riskier assets have tended to move together even in the absence of correlations in the
underlying fundamentals. As sovereign debt issues, the US budget and debt ceiling impasses
have surfaced, investors lost their appetite for risk and moved toward relatively risk free assets
such as short-term US Treasuries. Thus, the investor sentiment that has changed rapidly with
news is manifested in the inflows about a week later.

The rules and regulations for trading in financial markets have become a focus of attention
in recent years, partly because of several “flash crashes” where prices fell sharply in the absence
of any significant new information. Unfortunately, there is little scientific theory that can assist
government and industry leaders in formulating rules that would foster stability. Classical
finance does not address this issue, mainly because of the assumption of infinite arbitrage
capital. Thus a theory in which assets are finite is crucial to obtaining an understanding of
market dynamics in these situations. This leads naturally to a system of differential equations,
where a large amount of theory of stability of solutions can be utilized. Consequently, the
asset flow differential equation approach can be very useful in terms of understanding the
basic issues underlying regulatory concerns and market stability.

Our results show that within many parameter regimes, simply shortening the time scale,
1/c1, of the trend investors is sufficient to shift the equilibrium from stable to unstable. How
much it must be shortened in order to make this transition depends on the particular point
on the equibrium curve, and the distance from the stable point to the unstable. In some cases
reducing 1/c1 by a factor of five or less is adequate to move the point from stable to unstable.
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The resulting excursion (i.e., maximum deviation in price from the starting point) can be
quite large. In the high frequency trading that prevails today, the scale 1/c1 is generally very
small. The reason we do not see even more flash crashes is probably due to the existence of
layers of limit orders (by value based managers) that support prices at various levels below
the trading prices.

The parameters ci and qi can be evaluated using optimization methods [14] so that one
can obtain an objective measure of the aggregate or average time scale 1/c1 among the trend
based investors within a market. One can thus utilize the parameters together with other
information in order to determine stability and estimate the anticipated excursions in the
case of instablility.

We have used values of parameters that are typical of experiments and the optimization
studies that have been performed on particular asset classes. In practical application, for
example of the aggregate US market, one can use the data from SPY to optimize and estimate
the parameters that will determine the curve of equilibria as well as the stable and unstable
points. With this information one can also estimate how much of a change in the time
scale would result in a transition from stable to unstable. Furthermore, a shift in investor
motivations (e.g. an increased emphasis on the trend), which would be accompanied by a shift
in the fraction of assets owned by the momentum group, could also precipitate instability (see
[9]). Moreover, one could also approximate the resulting excursion.

We have considered purely deterministic equations as a direct way to understand stability
issues. Stochastic issues in finance are often studied through a default equation such as (1.1) in
which a constant level of randomness is inserted into price as an empirical equation. Using the
asset flow approach one can model randomness through a term in the cash supply, valuation
or other variables in the system and determine how these are manifested in terms of the price.
A related question is the resulting price distribution that one would obtain as a result. In
other words, does a normal distribution in the cash supply, for example, result in a normal
distribution in the price? Are there fat tails that are observed in many markets?

Equation (1.1) has been at the heart of modern options theory. Any conclusion that one
can obtain through the asset flow equations about the variance in price would be instrumental
in obtaining more realistic equations for options theory. Thus, the asset flow equations would
yield a variance, σ2 (t), that would be used in equation (1.1) as the basis for the derivation of
the options equations.

Appendix A. Details for Theorem 3.5.
In this appendix we provide details for the proof of Theorem 3.5 (in which the k(i) are

not constants) that were omitted above. Specifically, we show how the matrix A may be
transformed into Ã.

The system (2.6)-(2.8) is linearized using the following relations:

∂F

∂M(i)

∣∣∣∣
eq

=
k(i)

β

∂F

∂N(i)
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eq

= − α

β2

(
1− k(i)

)
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∂Ṁ(i)

∂M(j)

∣∣∣∣∣
eq

= −k(i)δij + v(i)k(j)

∂Ṁ(i)
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= − 1
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∂x
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eq

In addition to the relations above we have also

∂F

∂ζ(i)
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eq

=
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eq
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eq
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(
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)
θ(j),

The matrix A has the form shown in (3.24) where the block matrices have the form

A(j,j) =

−k
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)
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β
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 ,

A(G+1,j) =
[
k(j)/β −α

(
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)
/β2 W(j)θ(j)/β

]
, and

A(j,G+1) =

 0
0

∂ψ(i)

∂p

 .

We utilize the same change of coordinates as above, i.e.

Q =


Q(1) · · · 0 · · · 0

...
...

...

0 · · · Q(j) · · · 0
...

...
...

0 · · · 0 · · · 1
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with

Q(j) =

 β α 0

−βk(j) α
(
1− k(j)

)
0

0 0 1

 .

This yields

Ã =


Ã(1,1) · · · Ã(1,j) · · · Ã(1,G+1)

...
...

...
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...
...

...
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0
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 .
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