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Abstract

A two-dimensional continuum model of collective cell migration is used to predict the closure of 

gaps in intestinal epithelial cell layers. The model assumes cell migration is governed by 

lamellipodia formation, cell-cell adhesion, and cell-substrate adhesion. Model predictions of the 

gap edge position and complete gap closure time are compared with experimental measures from 

cell layer scratch assays (also called scratch wound assays). The goal of the study is to combine 

experimental observations with mathematical descriptions of cell motion to identify effects of gap 

shape and area on closure time and to propose a method that uses a simple measure (e.g., area) to 

predict overall gap closure time early in the closure process. Gap closure time is shown to increase 

linearly with increasing gap area; however, gaps of equal areas but different aspect ratios differ 

greatly in healing time. Previous methods that calculate overall healing time according to the 

absolute or percent change in gap area assume that the gap area changes at a constant rate and 

typically underestimate gap closure time. In this study, data from scratch assays suggest that the 

rate of change of area is proportional to the first power or square root power of area.
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Introduction

Tissue injuries, which may result from trauma, surgery, or disease, are associated with 

disrupted functionality of a tissue and an increased risk of infection. For example, injuries to 

the skin compromise the body’s ability to protect itself against the environment [1] and 

injuries to the intestinal epithelial layer could result in bacterial sepsis. Tissue repair requires 

the migration of cells into the wounded region and the proliferation of new cells to restore 

the original density of the tissue. A wound is considered healed once tissue functionality has 

been fully restored [2].

The ability to predict wound healing time accurately could allow clinicians to quantify the 

benefit of various treatment strategies and identify procedures that accelerate healing [3]. To 

achieve this, simple and informative measurements to assess wounds during the healing 

process are needed. Mathematical descriptions of wound healing may be useful in 

determining quantifiable indicators of complete wound closure. As expected, the size and 

location of a wound are factors that affect healing rates. Deep wounds heal more slowly than 

superficial wounds since several cell layers and blood vessels are interrupted, requiring the 

formation of a blood clot and the contraction of cells [4]. Superficial wounds, such as 

wounds in the intestinal epithelial cell layer, disrupt only a single layer of cells and rely 

primarily on cell migration in the initial stages of healing. A combination of clinical 

observations with mathematical explanations of wound healing may help to elucidate 

important factors and methods for predicting overall healing time for a variety of wound 

types.

Observations of wound closure

To assess the progression of a wound, quantities such as absolute wound area remaining, 

percentage of initial wound area remaining, wound volume remaining, wound perimeter 

remaining, wound healing velocity, and mean adjusted healing rates have been measured [3, 
5]. Some of these measurements can be difficult to obtain clinically, and there is currently no 

universally accepted measure of wound healing [2]. While wound area is an obvious 

measure of wound closure, predicting healing time based on the percent of wound area 

healed tends to bias small wounds and based on the absolute wound area healed tends to bias 

large wounds [6, 7].

Gilman [8] proposed an alternate measure, called the linear healing parameter, that 

represents the average distance the wound margin has advanced over a given time period. 

Gorin et al. [7] showed that healing rates calculated according to the linear healing 

parameter had no correlation to initial wound area. The linear healing parameter tends to 

remain relatively constant over time and thus may be a reliable forecaster of total healing 

time [9].

In [6], three methods for calculating healing times based on wound area and the linear 

healing parameter are described and compared. The healing times for a theoretical circular 

wound of radius 50 mm were calculated using the three methods. It was observed that 

calculating the absolute area or percent area will almost always underestimate the healing 

time for a wound, whereas the linear healing rate of the wound was constant and provided 
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the most accurate measure of healing time. It should be noted that these methods give 

accurate predictions only if the rate of change of area or of the linear healing parameter is 

nearly constant.

The principle of the “greatest inscribed circle” has also been used to explain wound closure 

via epithelialization in the absence of wound contraction [10]. According to this theory, the 

time for epithelialization of a wound is directly proportional to the radius of the largest circle 

that can fit within the boundary of the original wound. It was observed that two rectangular 

wounds with the same area but with different inscribed circle radii did not close in the same 

amount of time; the rectangle with the larger inscribed circle radius closed more slowly 

since the radius represents the greatest distance over which the epithelium must migrate 

[10].

Wounds exhibit a wide variety of geometries, including concave, convex, and highly 

irregular shapes. In [11], the change in shape of venous leg ulcers was evaluated over time, 

and a regression analysis was used to conclude that wounds that shifted to a convex shape 

over time were more likely to heal than those that did not change shape. In another study 

involving venous leg ulcers, wound surface area decreased exponentially with time early in 

the treatment phase [11]. However, it was noted that an exponential function is not accurate 

over a long time period and thus may only be appropriate when describing the contraction 

phase of wound closure.

Zahm et al. [12] examined in vitro wound repair of the respiratory surface epithelium. 

Unlike the exponential healing time observed in venus leg ulcers, the wounded area of the 

respiratory epithelium was observed to decrease linearly with time during the first half of 

wound closure (~50 h). During the second half of closure, the repair process slowed, but the 

number of proliferative cells in the repairing area increased dramatically until wound closure 

was complete (~day 4). Video recordings of the wound culture showed lamellipodia 

formation at the wound edge. This protrusion mechanism was observed to be accompanied 

by cell-cell and cell-matrix interactions governing the migration of the remaining cell layer 

[12].

The observations from these multiple wound scenarios demonstrate that healing time 

predictions are affected by multiple factors such as wound geometry, tissue type, cell-cell 

interactions, and the stage of the healing process (epithelialization, contraction, or 

proliferation). In this paper, we analyze the influence of these factors on the closure time of 

a gap in a cell layer using a recently developed two-dimensional continuum model [13] of 

collective cell migration based on data from cell layer scratch assays (also known as scratch 

wound assays, in other contexts). Using a mathematical model to assess these factors can 

allow us to make predictions and derive analytical results that are not biased by experimental 

uncertainty.

Mathematical modeling of wound healing

Many mathematical models have used reaction diffusion equations to describe wound 

healing [14, 15]. For example, Sherratt and Murray [15] investigated planar epidermal 

movement controlled by diffusion and a mitotic regulator that activates or inhibits migration. 
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Model predictions of the decrease in the radius of a circular wound were consistent with 

experimental data from wounds of a similar diameter for a range of species and wound 

locations [14]. The model was also used to predict healing times for multiple wound 

geometries, including cusped, diamond, and ovate-shaped wounds. Healing time was 

predicted to decrease as the side-to-length ratio of rectangular wounds was increased, 

regardless of activation or inhibition. In the presence of the regulation of mitosis via an 

inhibitor mechanism, wounds with an initially cusped shape progressed into a rounded 

wound during healing, whereas initially ovate wounds flattened and healed faster [14]. 

Sadovsky and Wan [16] also studied epidermal wound closure. They developed a continuum 

mechanical model in which the circumferential contraction of the epidermis surrounding the 

wound is governed by laws of mechanics and cell-cell signaling. They note that different 

expressions for elastic strain or active stress may be necessary to explain the dynamics of the 

wound closure process near complete closure, and they did not include proliferation or 

differentiation in the current version of the model.

Javierre et al. [17] developed a two-dimensional model for wound closure of the epidermal 

basal membrane; closure was mediated by cell mitosis and lamellipodia-induced cell 

migration in the presence of a generic epidermal growth factor. Multiple wounds on planar 

surfaces were considered, and wound morphology was identified as a key parameter 

affecting healing kinetics. The model was used to predict that healing is initiated at regions 

with high convexity and is delayed if the diffusion of the growth factor is slower than the 

rate of cell migration. Lee and Wolgemuth [18] provided a biophysical description of 

collective migration of epithelial cells based on the motility of single cells. They considered 

four types of forces that act throughout an epithelial monolayer: intercellular stress, 

polarization stresses generated inside of the cells by the action of the cytoskeleton, actin, and 

molecular motors, thrust forces against the substrate, cell-cell adhesion forces, and drag 

forces due to cell-substrate adhesions. Their seven-parameter model showed that the 

mechanical process that drives single cell crawling is sufficient to drive motion of a layer if 

cell-cell adhesion is taken into account.

Along the same lines, we have recently developed a two-dimensional continuum model to 

describe the collective migration of an intestinal epithelial cell layer in response to a gap 

[13]. Three mechanisms are assumed to govern gap closure: lamellipodia formation, 

substrate adhesion, and cell-cell adhesion. The model includes the contribution of cell 

migration to gap closure but neglects proliferation because the model was calibrated to 

experimental data from scratch assays of intestinal epithelial cells over relatively short time 

periods during which proliferation was balanced by apoptosis. The model parameters were 

optimized according to the density of the cell layer and location of the gap edge in scratch 

assays [13].

The model is used to track the closure of both hypothetical and experimentally-based 

geometries of gaps in cell layers. Model parameters are varied to demonstrate the effect of 

model assumptions and tissue type on the predicted healing time. The evolution of multiple 

gaps is predicted, and different phases of gap edge velocity are identified. The effects of 

initial gap geometry on gap closure characteristics are investigated, and gap closure time is 

shown to differ for gaps of equal areas but different initial shapes. Closure time as a function 
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of inscribed circle radii is also determined. The suitability of three common methods for 

calculating healing time is explored by comparing model predictions with experimental time 

measurements for intestinal epithelial cell scratch assays, and two new methods for 

calculating healing time are proposed.

Materials and Methods

Experimental gap edge

In a scratch assay, rat intestinal enterocytes (IEC-6 cells) obtained by the Hackam Lab at the 

University of Pittsburgh from ATTC are cultured on a glass coverslip, grown to 100% 

confluence, serum-starved for 12 hours, and scraped with a pipette to induce an injured 

region within the cell sheet. The cell sheet is one cell thick, and the motion and deformation 

of the cells are captured at 5 minute intervals using differential interference contrast 

imaging. Multiple points along the experimental gap edges are recorded by hand and used to 

determine the area and perimeter of each experimental gap at multiple time points.

Computational gap edge

Migration of a two-dimensional cell layer with a gap is predicted using a previously-

developed continuum model [13]. The cell layer is defined by a density of cells, ρ(x,y,t), 
given as a function of the spatial coordinates x and y and time t. A relaxed (unstressed) cell 

layer is given by ρ0. In the scratch assay, the initial cell layer is assumed to be pre-stressed 

due to the forces generated by the lamellipodia of the cells throughout the entire layer. The 

motion of the cell layer is assumed to be driven by the force of the lamellipodia (F) acting in 

the direction normal to the gap edge, the stretching of the layer described by the elastic 

modulus (k), and the friction between the cells and the substrate, which includes the effects 

of the release of the trailing cell edge and is described by an adhesion constant b. For 

simplicity, we neglect higher order effects such as adhesion of neighboring cells to each 

other, which can be described as viscosity of the layer, and dipole moments arising from cell 

polarizations. Such effects have been implemented in other models, such as [18]. Ratios of 

these parameters are represented by two constants: ϕ = F/k and κ = k/b.

In [13], it was shown that the model reduces to the following free boundary problem:

(1)
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where g(ρ) defines the proliferation of cells in the layer, Ωt represents the time-dependent 

tissue area,  is the gap boundary, and ∂Ω2 is the boundary of the observed area (see 

Figure 1). In the development of the model, the cell sheet is represented as a compressible 

inviscid fluid. The form of Eq. 1 results from the choice of the constitutive equation for 

material elasticity (see [19] for details) and does not arise from any underlying diffusion 

process. The free boundary problem with g = 0 and the defined initial and boundary 

conditions is known as the Stefan problem, which has been extensively studied in many 

contexts [20, 21]. A numerical solution is found for a given gap geometry using a variation 

of a level set method that was developed in [22] and applied to Stefan problems in [23, 24].

Optimal values of ϕ, κ, and ρ0 were found by minimizing the sum of the mean square 

difference between the experimental and predicted cell density values and gap edge 

positions. The values ϕ = 0.19, κ = 72.53 µm2/h, and ρ0 = 0.63 cells/µm2 were optimized 

according to gap closure data from IEC-6 cells [13].

We analyze gaps of different geometries defined within a 100 µm by 100 µm region of cells 

representing intact tissue. Predicted closure times and shapes of the gap contours would be 

affected by the choice of Dirichlet or Neumann boundary conditions, as described in [13]. In 

this study, the critical size for the computational domain was determined so that model 

predictions were not affected by changes in domain size. Dirichlet boundary conditions are 

chosen on the boundary of the tissue region since cells are assumed to extend far beyond the 

gap edge. The time-dependent position of the gap edge is predicted using the model, and the 

area and perimeter of the gap are calculated at multiple time points. The gap is considered 

completely closed once the area of the gap falls below twice the area of a numerical grid 

space (1 µm).

The computational representation of the gap edge consists of a discrete set of points. To 

obtain the average instantaneous velocity along the computed gap edge, the normal velocity 

at each point on the gap contour is calculated. Arc lengths between each consecutive pair of 

points are calculated, and the velocity along each segment is estimated.

Healing time calculations

Three commonly used methods for estimating wound closure time are the Absolute Area 

Reduction method, Percent Area Reduction method, and Linear Parameter method [6]. The 

Area Reduction methods are based on the assumption that the time rate of change in wound 

area, c, is constant. The Absolute Area Reduction method estimates the constant c in the 

average sense as the ratio of the difference between the current wound area and original 

wound area to the total change in time. The Percent Area Reduction method estimates c as 

the instantaneous change by calculating the difference in wound areas between two 

consecutive time points. The Linear Parameter method assumes that the average velocity of 

the wound edge over the wound contour is constant in time [6]. The linear healing 
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parameter, d, is defined as the ratio of the difference in wound areas to the average perimeter 

for two consecutive time points:

(2)

where Ai is wound area and Pi is wound perimeter at time ti. The Linear Parameter method 

was developed to remove the bias in the Area Reduction methods to wound size. Gilman [6] 

used the Linear Parameter method to predict healing time for a circular wound in the 

following way:

(3)

Since the rate of change of the radius is assumed to be constant,

(4)

Solving Eq. 4 for R(t) with initial condition (0, R0) gives

(5)

Closure time (tf) is calculated using this method by solving for t in Eq. 5 with R(tf) = Rmin:

(6)

For noncircular wound shapes, R0 is the radius of the inscribed circle of the initial wound 

shape.

In addition to these three methods, we investigate two methods of calculating healing time in 

which the time rate of change of area is not constant but is proportional to the square root of 

area (Square Root Area method) or the first power of area (Proportional Area method).

The Square Root Area method is motivated by the observation that if wound area is assumed 

to be proportional to the square of the inscribed radius and if the rate of change of the 

inscribed radius is assumed constant (as in the Linear Parameter method), then the rate of 

change of wound area will be proportional to the square root of area, which is consistent 

with some experimental findings [25]. The Proportional Area method was hypothesized 

according to area measurements obtained from the scratch assays examined in this study.
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The assumed relationship for each method is listed in row 1 of Table 1. The estimates of the 

rates of change are given in row 2. In row 3, the solution to the differential equation from 

row 1 is given in terms of ci and initial conditions. Finally, in row 4, healing time is found by 

solving for the value of t in row 3 when A = Amin (or R = Rmin). Amin (or Rmin) represents 

the minimal wound area (or radius) at which a wound is considered closed.

Results

Effect of model parameters on gap closure time

In Fig. 2, the optimized values of ϕ and κ (ϕ0 = 0.19 and κ0= 72.53 µm2/h) are varied to 

illustrate the dependence of model predictions on parameter values. Recalling that ϕ = F/k 
and κ = k/b, it is evident that a change in F only affects the value of ϕ and a change in b only 

affects the value of κ whereas a change in k alters both ϕand κ. The top row of Fig. 2 shows 

that increasing the force of the lamellipodia (F), decreasing the frictional coefficient (b), or 

decreasing the elastic modulus of the layer (k) can reduce gap closure time predictions.

In the second row of Fig. 2, parameter k is varied by factors of 5 (as in Fig. 2C). These k 
values correspond to ϕ=5ϕ0 and κ=κ0/5 (Fig. 2D, k = k0/5), ϕ=ϕ0 and κ=κ0 (Fig. 2E, k = 

k0), and ϕ=ϕ0/5 and κ=5κ0 (Fig. 2F, k = 5k0). In panel D, the velocity of the edge is 

observed to be independent of the curvature of the gap and slows with time. In panel F, the 

gap edge velocity decreases with decreasing curvature (the velocity is effectively zero if the 

curvature is negative, corresponding to an inside corner) and is uniform with time. 

Differences in these parameters correspond to differences in tissue type, suggesting that 

closure times can differ widely with location of a wound. For example, MDCK cells (used in 

[18]) and IEC-6 enterocytes (used here) exhibit different cell-cell adhesion and migration 

properties; IEC-6 cells do not show the complex wound edge evolution (oscillations) known 

to occur in MDCK cells.

It follows from Eq. 1 that any change in can be accommodated by a change in the units of 

time without affecting the solutions of the model. In other words if ρ(x,t) is a solution of the 

boundary value problem in Eq. 1, then ρ̃(x,t) = ρ(x,tτ) is a solution of the BVP with kappa 

replaced by κτ and vn replaced by vn,τ. Thus, solutions of the BVP with different κ values 

but the same ϕ will give rise to the same sequence of shapes for the gap edge, only with 

different times of progression through those shapes; the higher the κ, the faster the closure. 

In the remaining results presented in this study, the optimized values of ϕ0 = 0.19 and κ0= 

72.53 µm2/h [13] (shown in Fig. 2E) are used to describe the motion of the intestinal 

epithelial cell layer.

Effect of gap geometry on gap closure time

Numerical computation of the evolution of the gap edge for various initial gap geometries 

(Fig. 3) predicts that motion of the gap edge is always in the direction that closes the gap, 

i.e., the edge never retracts to make the gap larger, even at the extreme corners. The model 

predicts that convex gaps with more than one axis of symmetry, such as a square (Fig. 3A) 

or circle (Fig. 3B), close symmetrically. Gap shapes with unequal dimensions, such as a 

rectangle (Fig. 3C) or ellipse (Fig. 3D), tend to close faster in the direction perpendicular to 
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the smallest dimension. Corners are generally smoothed out during the evolution except for 

gaps with large initial aspect ratio where a sharp corner with high edge curvature forms as 

the gap retreats from the area (Fig. 3E). The model predicts that the gap edge ultimately 

converges toward a convex shape, even though convexity may be attained fairly late in the 

closure process. In rare instances, the topology of the cell layer may change from an annulus 

to a region with 2 or more holes (Fig. 3F), which has also been observed in experiments. The 

six gaps in Fig. 3 have an initial area of 400 µm2. The plotted contours correspond to the 

position of the gap edge at half hour intervals, and the gap area remaining after 2 hours has 

been shaded. Similar images are provided in Figure 4, but with the initial geometry 

corresponding to the positions of the gap edges in the epithelial cell layer scratch wound 

assays. The contours represent positions of the gap edge every 30 minutes.

Model predictions of gap closure time as a function of initial gap area are shown in Fig. 5A 

for multiple initial gap geometries with initial areas between 100 and 1200 µm2, including 

squares, circles, and rectangles and ellipses with different aspect ratios. In addition, 

experimentally measured closure times for the eight scratch assays shown in Fig. 4 are 

included (Fig. 5A, open circles). As expected, closure time increases with initial gap area but 

is not the same for all gap shapes of equal area. Gaps with an aspect ratio of one close in 

approximately the same amount of time (e.g., circle and square gaps). However, as this 

aspect ratio deviates from one, the time for gap closure predicted by the model decreases. 

The ratios of the closure times of various gaps to the closure time of a circular gap are 

shown in Fig. 5B to highlight how the difference in gap shape affects predicted closure time. 

In addition, gap closure time as a function of inscribed circle radius is shown in Fig. 5C. 

Gaps of equal area are connected by solid curves and labeled. As observed by Watts [10], 

gaps with the same area but with different inscribed circle radii do not heal at the same rate.

Predicting closure time using area and perimeter measurements

In the limit of small ΔA, the ratio of the linear healing parameter to the time difference 

converges to the mean normal velocity of gap closure when averaged over the gap edge. The 

average instantaneous gap edge velocity predicted by the model for the experimental scratch 

assay in Fig. 4A is denoted by the solid curve in Fig. 6A and is shown to be approximately 

equal to the time rate of change of the linear healing parameter when calculated for the same 

gap using Eq. 2 (Fig. 6A, open squares). This verifies that average instantaneous velocity 

can be directly compared with the rate of change of linear healing parameters. The linear 

healing rate calculated from the area and perimeter data for the experimental gap in Fig. 4A 

is also shown (black dots) for Δt = 30 minutes. In Fig. 5B–D, the linear healing rate is 

calculated for three additional experimental gaps from Fig. 4 (black dots) with Δt = 30 

minutes and compared with the model predictions of average instantaneous velocity for 

those gaps (solid curves).

The average instantaneous velocity of the gap edge, as predicted by the model, exhibits 

different phases of behavior. Initially, the gap edge velocity is maximal; it then steadily 

decreases to a lower value at which it remains relatively constant for the majority of the 

closure process. In some cases, the velocity is predicted to increase slightly at the final stage 

of gap closure. We hypothesize that this slight increase may be due to the increasing 
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curvature of the gap edge at the final time steps. These phases have been observed in some 

of the scratch assays, although the final increase is not always observed experimentally.

The Absolute Area, Percent Area, and Linear Parameter methods as well as the Square Root 

and Proportional Area methods are used to predict the healing time of an experimental cell 

layer scratch assay (Fig. 7, right column), which was found experimentally to be nearly 8.5 

hours. In the left column of Fig. 7, the proportionality constants for all of the methods are 

plotted as a function of time. These plots are used to investigate whether or not the assumed 

proportionality constants indeed remain constant. In all panels, solid curves correspond to 

model calculations and dots correspond to the measurements from the assay. The dashed 

curve in Fig. 7F represents the closure time prediction according to the Square Root method, 

which is based on the linear healing parameter but assumes gap area is always proportional 

to the square of the radius. The results in Fig. 7 indicate that the Absolute and Percent Area 

methods underestimate the closure time, verifying Gilman’s conclusions [6]. However, 

unlike Gilman’s findings, the linear healing rate is not predicted to be constant for this 

scratch assay, and thus the Linear Parameter method gives both an overestimate and 

underestimate of the closure time during the different phases of closure instead of 

converging to the actual closure time. The Square Root and Proportional Area methods are 

shown to provide better overall predictions of total closure time.

Discussion

In this paper we use a previously developed two-dimensional continuum mechanical model 

of gap closure [13] to study the dependence of gap closure times on initial gap shape, gap 

area, and parameters reflecting tissue type and cell-cell interactions. In addition we employ 

the model to evaluate the commonly used methods for predicting gap closure time and 

propose two new alternative methods which show better accuracy of predictions.

The model we employ [13] describes all of the characteristic features of a migrating 

intestinal epithelial cell layer in response to a gap: it predicts motion of the gap edge in the 

direction of the gap (no retractions of the edge), faster motion of the edge in regions with 

higher curvature, and a change in the topology of the gap from one to multiple holes under 

certain conditions (Fig. 3F). The methods developed here can be applied to any wound 

healing model; it would be illustrative to examine whether more complex models (such as 

[18], which includes effects of cell polarization, dipole stress, and shear force) give similar 

predictions as our model.

Effect of model parameters on gap closure time

The model indicates that the time for gap closure increases with decreasing lamellipod force, 

increasing adhesion, or increasing elastic modulus of the cell layer. This is in accord with 

observations that if lamellipod formation at the gap edge is inhibited, gap closure is slowed 

or even stalled [26]. Throughout the paper we used a single pair of constants obtained by 

fitting IEC-6 cell migration scratch assay results [13]. However, we have observed that 

fitting model parameters to data is difficult due to the insensitivity of the gap shape to the 

parameters. As seen in Fig. 2D–F, a ten-fold difference in parameter values gives rise to 

solutions with similar gap shapes. In general, the prediction of the gap closure time is much 
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more sensitive than the prediction of the gap shape. This significant error in the gap shape 

results in an ill-posed optimization problem in the space of the two parameters, κ and ϕ.

The numerical solution of the gap closure contour in Fig. 3E was sensitive to the grid 

spacing, and the closure progress slowed down severely as the program attempted to smooth 

out any sharp corners that developed during the closure process. We are working to resolve 

this issue by using a finite element method approach. For this study, we ran model 

simulations on a refined mesh for the gap shapes shown in Fig. 3 (except panel E), and the 

closure times and contours were not different. We also note that the Square Root and 

Proportional Area Methods proposed in this study (see Table 1) were based on the closure of 

cell layer scratch assays for which model predictions of gap closure did not depend on the 

grid spacing. In addition, complete closure of gaps with aspect ratios that deviate from one 

does not occur until the gap also closes in the longest dimension. This behavior differs from 

behavior observed in vitro or in vivo in which wounds may be able to close along a seam 

instead of being required to close to a single point. Therefore, the numerical implementation 

of the model causes an overestimation of the closure time for gap with aspect ratios that are 

different from one.

Effect of gap geometry on gap closure time

The ability to accurately quantify wound healing time is of crucial importance to both 

clinicians and patients. Clinicians need to assess whether or not a particular treatment 

strategy is optimal, and patients appreciate any indication of their expected recovery time. 

An advantage of using a mathematical model to predict wound closure is the potential ability 

to predict healing times without conducting a closely monitored study over several months 

[3]. However, as illustrated in the present study (Fig. 5), it is important to be mindful that 

model predictions of closure time are sensitive to wound shape, size, and type.

The results in Fig. 5A suggest that closure time increases linearly with increasing gap area, 

although gaps of equal area do not necessarily close in the same amount of time (Fig. 5B). 

Multiple initial gap geometries are explored in Fig. 5 to give a potential range of gap closure 

time for gaps of a given initial area; as initial gap area increases, the range of possible 

closure time varies more substantially (e.g., 4–9 hours for a gap with an initial area of 1200 

µm2). Since it is impossible to predict all possible gap shapes, the time ranges provided here 

are lower bounds on the actual closure time ranges for intestinal epithelial gap closure. As a 

general rule, as the aspect ratio of the gap deviates from one, the time for gap closure 

predicted by the model decreases (e.g., rectangles and ellipses). This prediction is consistent 

with previous findings in an epidermal migration model [14]. Gap closure times for scratch 

assays are included on the plot (open circles, Fig. 5A) to illustrate that the ranges of closure 

times predicted by this model provide fairly good estimates of actual closure time of two-

dimensional gap within an epithelial cell layer. While a few of the points lie outside of the 

predicted range, this is likely due to the position of the experimental gap (e.g., Neumann 

boundary conditions may be more appropriate when tracking gaps located near the edge of 

the cell layer) or due to uncertainty of the true initial gap area (e.g., the initial gap edges 

were not always visible in the microscope image).
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The model accurately captures the edge velocity of actual experimental gaps in many cases 

(Fig. 6B) but overestimates the time to gap closure in others (Fig. 6D). This may result from 

overestimating the original gap dimension if the edges of the gap were not entirely within 

the microscope viewing area. Also, some of the experimental gaps are observed to pinch off 

into multiple pieces, while the model predicts the evolution of a single gap contour till 

closure. By not predicting a pinch off, the model assigns a larger area to the gap, thereby 

contributing to the overestimation of total gap closure time.

It is important to note that these predictions are based on a model calibrated to a particular 

line of intestinal epithelial cells. Actual closure times for wounds in other tissue types may 

differ significantly from the values given in this study. The model could be adapted to data 

from different tissues (provided they can be approximated as two-dimensional) to provide 

more appropriate healing time estimates in other tissue types. In addition, factors such as 

cell proliferation, wound contraction, tissue growth factors, or blood supply are not modeled 

here but could be added to the model to determine their impact on closure time in other 

situations. For example, including a variable for growth factors can help to quantify which 

mechanisms are most significantly impacted by growth factors. A viscous term is not 

included in the current version of the model, but future work should include viscous effects, 

as in [18], to take into account the viscous stress resulting from differences in velocity 

between neighboring cells.

Predicting closure time using area and perimeter measurements

Given the observed variance of closure time with gap area, a method of predicting gap 

closure times independent of wound geometry or initial area has important application in the 

clinical setting. It is especially important to have a simple mathematical formula for 

predicting wound closure time based on readily available measurements of wound 

characteristics, such as wound area and wound perimeter. We found that the Absolute Area 

method and Percent Area method underestimate closure times and fail to provide accurate 

estimates until the very end of the closure process, which is in agreement with previously 

established conclusions [6].

Gilman [6] claims that a Linear Parameter method provides a better estimate of the actual 

healing time because the linear healing parameter is constant during the closure. However, 

the scratch assays in this study did not exhibit this behavior. By definition, the ratio of the 

linear healing parameter to time difference is equivalent to the average instantaneous normal 

velocity of the gap edge (Fig. 6A). In the scratch assays, gap edge velocity was observed to 

vary during the initial closure process but to be nearly constant after the first hour of closure. 

Velocity is maximal at the beginning of closure, which Zahm et al. [12] hypothesized is due 

to the availability of new space for the cells to occupy. For some gaps, the model predicts a 

slight speed-up near the end of closure (Fig. 6C); this speed-up also occurs in some 

experimental assays but is not seen consistently for all gaps. A comparison of the average 

instantaneous velocity predictions for multiple gap shapes (including squares, circles, 

rectangles, triangles, and ellipses) suggests that the speed-up occurs for gaps with multiple 

axes of symmetry. We hypothesize that the presence or absence of this final speed-up stage 

may be a function of initial gap geometry and the curvature of the evolving gap edge.
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We propose two additional methods for computing the closure time, the Square Root method 

and Proportional Area method, which are based on the assumptions that the dependence of 

the time-rate of change of the gap area is proportional to the square root of area or the first 

power of area, respectively. These methods provide better estimates of gap closure time than 

the three previously established methods since they both converge to the correct gap closure 

time as more data is available and they provide accurate predictions at early stages of the 

closure process. Thus, the model predictions support the use of a simple measure, such as 

gap area, to provide a relatively accurate prediction of healing time after only the first few 

steps of gap closure. The Square Root method slightly underestimates the closure time 

initially, while the Proportional Area method slightly overestimates this time. It is possible 

that a method with time-rate of change of the gap area proportional to some power p of the 

area, where ½ < p < 1, would fit the data better, but we found that the estimation of this 

parameter is very difficult. As a compromise one could simply average the predictions of 

both methods to obtain a more accurate estimate. These two methods are useful for 

predicting a range of closure times for superficial wounds; however, other clinical aspects 

may be required to obtain accurate closure time predictions for wounds of various types and 

sizes. In summary, using mathematical modeling to predict how factors such as wound 

geometry and tissue type can affect closure time has an important application in studying 

wound healing and other disorders that are affected by the presence of injured tissue.
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Figure 1. 
Computational domain of the moving boundary initial value problem. Hatched area (Ωt) 

represents the cell layer, and the white area is a cell-free region. Two boundaries of Ωt are 

labeled:  (gap edge) and ∂Ω2 (exterior tissue edge). F is the force exerted by cells at the 

gap edge.
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Figure 2. 
Model predicted healing times and evolution of L-shaped gap edge while varying parameter 

values. Optimized parameter values for ϕ=F/k and κ=k/b are ϕ0 = 0.19 and κ0= 72.53 

µm2/h. A. Effect of increasing parameter F = F0/5, F0, 5F0 on gap closure time. B. Effect of 

increasing parameter b = b0/5, b0, 5b0 on gap closure time. C. Effect of increasing parameter 

k = k0/5, k0, 5k0 on gap closure time. In the bottom row, the evolution of the gap edge is 

shown for the three values of k in (C) at half hour increments. D. ϕ=5ϕ0 and κ=κ0/5. E. 

ϕ=ϕ0 and κ=κ0. F. ϕ=ϕ0/5 and κ =5κ0.
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Figure 3. 
Evolution of the gap edge of 6 different initial gap shapes. Each gap has an initial area of 

400 µm2 and is defined within a 100 µm × 100 µm tissue region. Gap contours are shown at 

30 minute intervals, and the gap area remaining after 2 hours has been shaded. A. Square. B. 

Circle. C. Rectangle. D. Ellipse. E. Cross. F. Cassini oval
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Figure 4. 
Evolution of the gap edge of 8 different scratch assays. Each gap is defined within a 100 µm 

× 100 µm tissue region. Gap contours are shown at 30 minute intervals until closure.
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Figure 5. 
A. Gap closure time as a function of initial gap area for multiple gap shapes: 4×1 rectangle 

(upward triangle), 2×1 rectangle (downward triangle), square (closed square), circle (closed 

circle), 4×1 ellipse (hexagon), and 2×1 ellipse (diamond). Closure times are calculated for 

all of these shapes with initial areas of 100, 200, 300, 400, 500, 600, 700, 800, and 1200 

µm2. Actual closure times for 8 different experimental scratch assays are also included in the 

figure (open circles). B. Ratio of closure time of each shape in panel A to the closure time of 

a circle of the same initial area. Symbols as in panel A. C. Gap closure time as a function of 
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inscribed circle radii. Gaps of equal area are connected by solid curves and labeled (values 

in µm2). Symbols as in panel A.
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Figure 6. 
A. Model computed average instantaneous gap edge velocity for the experimental wound 

shown in Fig. 4A (curve) is directly comparable to the time rate of change of the linear 

healing parameter computed from the areas and perimeters of the gap contours (open 

squares). The experimental values of time rate of change of the linear healing parameter are 

also shown at half hour intervals (dots). B–D. The time rates of change of the linear healing 

parameter is shown for three experimental scratch assays (dots) with Δt = 30 minutes and are 

compared with model predictions of average instantaneous velocity for those gaps (curves). 

Panel B shows good agreement between model predictions and experimental results. Panel C 

shows the occasional speed-up that is predicted by the model at the end of closure. Panel D 

shows that the model predictions overestimate gap closure times in some cases.
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Figure 7. 
Comparison of predicted healing times for an experimental scratch assay using five different 

methods (see text). In column 1 (panels A, C, E, G), the constant ci for each method (see 

Table 1) is plotted as a function of time. In column 2 (panels B, D, F, H), the predicted 

healing time for each method is shown as a function of time. A, B: Absolute Area Reduction 

method. C, D: Percent Area Reduction method. E, F: Linear Parameter method (solid line, 

black dots) and Square Root method (dashed line, open dots). G, H: Proportional Area 
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method. In all panels, solid lines correspond to model calculations and dots correspond to 

experimental measures.
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