27 research outputs found

    Heteroresistance to the model antimicrobial peptide polymyxin B in the emerging Neisseria meningitidis lineage 11.2 urethritis clade: mutations in the pilMNOPQ operon

    Get PDF
    Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple US cities have been attributed to a unique non‐encapsulated meningococcal clade (the US Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related species, Neisseria gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model AMP, polymyxin B (PmB, MICs 64–256 µg ml–1). The isolates also demonstrated stable subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384–1024 µg ml–1) and colistin (MIC 256 µg ml–1) as well as enhanced LL‐37 resistance. This is the first observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB resistance in US_NmUC isolates was due to active Mtr efflux and LptA‐mediated lipid A modification. However, whole genome sequencing, variant analyses and directed mutagenesis revealed that the heteroresistance phenotypes and very high‐level AMP resistance were the result of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV pilin biogenesis apparatus. Cross‐resistance to other classes of antibiotics was also observed in the heteroresistant colonies. High‐level resistance to AMPs may contribute to the pathogenesis of US_NmUC

    Complex Evolutionary History of the Aeromonas veronii Group Revealed by Host Interaction and DNA Sequence Data

    Get PDF
    Aeromonas veronii biovar sobria, Aeromonas veronii biovar veronii, and Aeromonas allosaccharophila are a closely related group of organisms, the Aeromonas veronii Group, that inhabit a wide range of host animals as a symbiont or pathogen. In this study, the ability of various strains to colonize the medicinal leech as a model for beneficial symbiosis and to kill wax worm larvae as a model for virulence was determined. Isolates cultured from the leech out-competed other strains in the leech model, while most strains were virulent in the wax worms. Three housekeeping genes, recA, dnaJ and gyrB, the gene encoding chitinase, chiA, and four loci associated with the type three secretion system, ascV, ascFG, aexT, and aexU were sequenced. The phylogenetic reconstruction failed to produce one consensus tree that was compatible with most of the individual genes. The Approximately Unbiased test and the Genetic Algorithm for Recombination Detection both provided further support for differing evolutionary histories among this group of genes. Two contrasting tests detected recombination within aexU, ascFG, ascV, dnaJ, and gyrB but not in aexT or chiA. Quartet decomposition analysis indicated a complex recent evolutionary history for these strains with a high frequency of horizontal gene transfer between several but not among all strains. In this study we demonstrate that at least for some strains, horizontal gene transfer occurs at a sufficient frequency to blur the signal from vertically inherited genes, despite strains being adapted to distinct niches. Simply increasing the number of genes included in the analysis is unlikely to overcome this challenge in organisms that occupy multiple niches and can exchange DNA between strains specialized to different niches. Instead, the detection of genes critical in the adaptation to specific niches may help to reveal the physiological specialization of these strains

    Genome-Wide Influence of Indel Substitutions on Evolution of Bacteria of the PVC Superphylum, Revealed Using a Novel Computational Method

    Get PDF
    Whole-genome scans for positive Darwinian selection are widely used to detect evolution of genome novelty. Most approaches are based on evaluation of nonsynonymous to synonymous substitution rate ratio across evolutionary lineages. These methods are sensitive to saturation of synonymous sites and thus cannot be used to study evolution of distantly related organisms. In contrast, indels occur less frequently than amino acid replacements, accumulate more slowly, and can be employed to characterize evolution of diverged organisms. As indels are also subject to the forces of natural selection, they can generate functional changes through positive selection. Here, we present a new computational approach to detect selective constraints on indel substitutions at the whole-genome level for distantly related organisms. Our method is based on ancestral sequence reconstruction, takes into account the varying susceptibility of different types of secondary structure to indels, and according to simulation studies is conservative. We applied this newly developed framework to characterize the evolution of organisms of the Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) bacterial superphylum. The superphylum contains organisms with unique cell biology, physiology, and diverse lifestyles. It includes bacteria with simple cell organization and more complex eukaryote-like compartmentalization. Lifestyles range from free-living organisms to obligate pathogens. In this study, we conduct a whole-genome level analysis of indel substitutions specific to evolutionary lineages of the PVC superphylum and found that indels evolved under positive selection on up to 12% of gene tree branches. We also analyzed possible functional consequences for several case studies of predicted indel events

    City of Hitchcock Comprehensive Plan 2020-2040

    Get PDF
    Hitchcock is a small town located in Galveston County (Figure 1.1), nestled up on the Texas Gulf Coast. It lies about 40 miles south-east of Houston. The boundaries of the city encloses an area of land of 60.46 sq. miles, an area of water of 31.64 sq. miles at an elevation just 16 feet above sea level. Hitchcock has more undeveloped land (~90% of total area) than the county combined. Its strategic location gives it a driving force of opportunities in the Houston-Galveston Region.The guiding principles for this planning process were Hitchcock’s vision statement and its corresponding goals, which were crafted by the task force. The goals focus on factors of growth and development including public participation, development considerations, transportation, community facilities, economic development, parks, and housing and social vulnerabilityTexas Target Communitie

    Sea Level Rise Maps: How Individual Differences Complicate the Cartographic Communication of an Uncertain Climate Change Hazard

    Get PDF
    Interactive, online maps of sea level rise have great potential for communicating climate change, as evidenced by both their popularity and likely ability to combat discounting of climate change hazards. However, little is known about how different audiences will interpret the significant uncertainties—including those related to the amount, timing, and spatial coverage of sea level rise flooding—communicated on many of these maps. A review of the risk perception literature presents three situations where different aspects of uncertainty have been suggested to dictate (or at least strongly encourage) adaptive or mitigative action in the context of sea level rise or similarly uncertain hazards, then problematizes these accounts by showing how context and personal differences mediate (and in some cases reverse) these expected relationships. A final section offers preliminary reflections on the implications for the cartographic communication of climate change and sea level rise uncertainty

    Determinants of Hurricane Evacuation from a Large Representative Sample of the U.S. Gulf Coast

    No full text
    Exposure to natural disasters like hurricanes negatively impacts the mental and physical health of populations, and evacuation is an important step taken to prevent these adverse health events. This study uses data from a large representative sample of U.S. Gulf Coast residents to explore the determinants of hurricane evacuation. In December 2017, data were collected from 3030 residents of the U.S. Gulf Coast, including Texas, Louisiana, Mississippi, Alabama, and Florida—2557 of whom reported being impacted during the 2017 hurricane season. Bivariate analyses were conducted using prevalence differences and tested for statistical significance with chi-square tests. Multivariable logistic regression models were fitted to identify factors associated with hurricane evacuation. One-third of the respondents (919 of 2557; 35.9%) evacuated from a hurricane that impacted the U.S. Gulf Coast in 2017. The determinants of hurricane evacuation in this population were: residing in a mobile home, higher perception of storm surge risk, higher perception of wind risk, self-sufficiency, carrying flood insurance, and reliance on media and family for evacuation decisions. These findings may be relevant for reducing the adverse health effects of hurricanes by improving emergency planning and evacuation in this highly vulnerable region

    Mapping cross-scale economic impacts of storm surge events: considerations for design and user testing

    No full text
    Cartographic display of cross-scale phenomena and user-centered design are considered through a discussion of the development of an interactive web map depicting local-to-national economic impacts of hurricane storm surge events in Galveston Bay, Texas. Map development and design (as informed by stakeholder focus groups) is described, including approaches to presenting complex, cross-scale impacts of surge events across multiple years and scenarios. Particular consideration is given to how designs may communicate complexity without overly taxing users’ mental and perceptual resources (measured via NASA task-load index) or outstripping their mapping/domain expertise. The map produced uses linked map views to communicate multiple, cross-scale storm surge impacts. The production process and associated user testing highlighted the importance of matching tool complexity to users’ needs and levels of expertise, including through the use of tiered interface design. Optimizing the design of such maps to meet users’ needs is essential to fostering public hazard literacy

    Introducing ICEDAP: An ‘Iterative Coastal Embayment Delineation and Analysis Process’ with Applications for the Management of Coastal Change

    No full text
    Coastal embayments provide vital benefits to both nature and humans alike in the form of ecosystem services, access to waterways, and general aesthetic appeal. These coastal interfaces are therefore often subject to human development and modifications, with estuarine embayments especially likely to have been anthropogenically altered. Frequent alterations include damming to eliminate tidal influx, backfilling to create new land, and development for the sake of economic gain, which may cause profound damage to local habitats. By providing a record of transitions in surface waters over time, satellite imagery is essential to monitoring these coastal changes, especially on regional to global scales. However, prior work has not provided a straightforward way to use these satellite-derived datasets to specifically delineate embayed waters, limiting researchers’ ability to focus their analyses on this ecologically and economically important subset of coastal waters. Here, we created ICEDAP, a geometry-based ArcGIS toolbox to automatically delineate coastal embayments and quantify coastal surface water change. We then applied ICEDAP to the coast of South Korea, and found that coastal habitat change was particularly profound within embayed regions identified using an 8 km epsilon convexity setting (denoting a moderate distance from the coast and degree of enclosure by surrounding land areas). In the mapped coastal embayments, more than 1400 km2 of coastal habitats were lost during the past 38 years, primarily due to human modification such as large-scale land reclamation projects and the construction of impoundments. Our results suggest that anthropogenic alterations have resulted in the widespread loss of more than USD 70 million of valuable coastal ecosystem services. Together, ICEDAP provides a new innovative tool for both coastal scientists and managers to automatically identify hotspots of coastal change over large spatial and temporal scales in an epoch where anthropogenic and climate-driven changes commonly threaten the stability of coastal habitats
    corecore