56 research outputs found

    “Where’s the I-O?” Artificial Intelligence and Machine Learning in Talent Management Systems

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) have seen widespread adoption by organizations seeking to identify and hire high-quality job applicants. Yet the volume, variety, and velocity of professional involvement among I-O psychologists remains relatively limited when it comes to developing and evaluating AI/ML applications for talent assessment and selection. Furthermore, there is a paucity of empirical research that investigates the reliability, validity, and fairness of AI/ML tools in organizational contexts. To stimulate future involvement and research, we share our review and perspective on the current state of AI/ML in talent assessment as well as its benefits and potential pitfalls; and in addressing the issue of fairness, we present experimental evidence regarding the potential for AI/ML to evoke adverse reactions from job applicants during selection procedures. We close by emphasizing increased collaboration among I-O psychologists, computer scientists, legal scholars, and members of other professional disciplines in developing, implementing, and evaluating AI/ML applications in organizational contexts

    Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A right-handed, calcium-dependent β-roll structure found in secreted proteases and repeat-in-toxin proteins was used as a template for the design of minimal, soluble, monomeric polypeptides that would fold in the presence of Ca<sup>2+</sup>. Two polypeptides were synthesised to contain two and four metal-binding sites, respectively, and exploit stacked tryptophan pairs to stabilise the fold and report on the conformational state of the polypeptide.</p> <p>Results</p> <p>Initial analysis of the two polypeptides in the presence of calcium suggested the polypeptides were disordered. The addition of lanthanum to these peptides caused aggregation. Upon further study by right angle light scattering and electron microscopy, the aggregates were identified as ordered protein filaments that required lanthanum to polymerize. These filaments could be disassembled by the addition of a chelating agent. A simple head-to-tail model is proposed for filament formation that explains the metal ion-dependency. The model is supported by the capping of one of the polypeptides with biotin, which disrupts filament formation and provides the ability to control the average length of the filaments.</p> <p>Conclusion</p> <p>Metal ion-dependent, reversible protein filament formation is demonstrated for two designed polypeptides. The polypeptides form filaments that are approximately 3 nm in diameter and several hundred nm in length. They are not amyloid-like in nature as demonstrated by their behaviour in the presence of congo red and thioflavin T. A capping strategy allows for the control of filament length and for potential applications including the "decoration" of a protein filament with various functional moieties.</p

    oPOSSUM: integrated tools for analysis of regulatory motif over-representation

    Get PDF
    The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM

    Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    Get PDF
    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions

    Mapping genetic variations to three- dimensional protein structures to enhance variant interpretation: a proposed framework

    Get PDF
    The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods

    Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial

    Get PDF
    Few treatments with a distinct mechanism of action are available for patients with platinum-refractory advanced or metastatic urothelial carcinoma. We assessed the efficacy and safety of treatment with docetaxel plus either ramucirumab-a human IgG1 VEGFR-2 antagonist-or placebo in this patient population

    A Meta-Analysis of the Effects of Electronic Performance Monitoring on Work Outcomes

    No full text
    Electronic performance monitoring (EPM), or the use of technological means to observe, record, and analyze information that directly or indirectly relates to employee job performance, is a now ubiquitous work practice. We conducted a comprehensive meta-analysis of the effects of EPM on workers (K = 94 independent samples, N = 23,461), while taking into account the characteristics of the monitoring. Results provide no evidence that EPM improves worker performance. Moreover, findings indicate that the presence of EPM increases worker stress and strain, regardless of the characteristics of monitoring. Findings also demonstrate that organizations that monitor more transparently and less invasively can expect more positive attitudes from workers. Overall, results highlight that even as advances in technology make possible a variety of ways to monitor workers, organizations must continue to consider the psychological component of work
    corecore