61 research outputs found

    Clinical profile of patients with ATP1A3 mutations in alternating hemiplegia of childhood-a study of 155 patients.

    Get PDF
    BACKGROUND: Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype. METHODS: Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational ATP1A3 gene data for each patient. RESULTS: In total, 34 different ATP1A3 mutations were detected in 85 % (132/155) patients, seven of which were novel. In general, mutations were found to cluster into five different regions. The most frequent mutations included: p.Asp801Asn (43 %; 57/132), p.Glu815Lys (16 %; 22/132), and p.Gly947Arg (11 %; 15/132). Of these, p.Glu815Lys was associated with a severe phenotype, with more severe intellectual and motor disability. p.Asp801Asn appeared to confer a milder phenotypic expression, and p.Gly947Arg appeared to correlate with the most favourable prognosis, compared to the other two frequent mutations. Overall, the comparison of the clinical profiles suggested a gradient of severity between the three major mutations with differences in intellectual (p = 0.029) and motor (p = 0.039) disabilities being statistically significant. For patients with epilepsy, age at onset of seizures was earlier for patients with either p.Glu815Lys or p.Gly947Arg mutation, compared to those with p.Asp801Asn mutation (p < 0.001). With regards to the five mutation clusters, some clusters appeared to correlate with certain clinical phenotypes. No statistically significant clinical correlations were found between patients with and without ATP1A3 mutations. CONCLUSIONS: Our results, demonstrate a highly variable clinical phenotype in patients with AHC2 that correlates with certain mutations and possibly clusters within the ATP1A3 gene. Our description of the clinical profile of patients with the most frequent mutations and the clinical picture of those with less common mutations confirms the results from previous studies, and further expands the spectrum of genotype-phenotype correlations. Our results may be useful to confirm diagnosis and may influence decisions to ensure appropriate early medical intervention in patients with AHC. They provide a stronger basis for the constitution of more homogeneous groups to be included in clinical trials

    Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects

    Get PDF
    Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention

    HLA in isolated REM sleep behavior disorder and Lewy body dementia

    Get PDF
    peer reviewedSynucleinopathies-related disorders such as Lewy body dementia (LBD) and isolated/idiopathic REM sleep behavior disorder (iRBD) have been associated with neuroinflammation. In this study, we examined whether the human leukocyte antigen (HLA) locus plays a role in iRBD and LBD. In iRBD, HLA-DRB1*11:01 was the only allele passing FDR correction (OR = 1.57, 95 CI = 1.27–1.93, p = 2.70e-05). We also discovered associations between iRBD and HLA-DRB1 70D (OR = 1.26, 95\%CI = 1.12–1.41, p = 8.76e-05), 70Q (OR = 0.81, 95\%CI = 0.72–0.91, p = 3.65e-04) and 71R (OR = 1.21, 95\%CI = 1.08–1.35, p = 1.35e-03). Position 71 (pomnibus = 0.00102) and 70 (pomnibus = 0.00125) were associated with iRBD. Our results suggest that the HLA locus may have different roles across synucleinopathies

    Common variants in P2RY11 are associated with narcolepsy.

    Get PDF
    l e t t e r s Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genomewide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3′ untranslated region of P2RY11, the purinergic receptor subtype P2Y 11 gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10 −10 , odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The diseaseassociated allele is correlated with reduced expression of P2RY11 in CD8 + T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases

    Common variants in P2RY11 are associated with narcolepsy.

    Get PDF
    Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genome-wide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3' untranslated region of P2RY11, the purinergic receptor subtype P2Y₁₁ gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10⁻¹⁰, odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The disease-associated allele is correlated with reduced expression of P2RY11 in CD8(+) T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases.journal articleresearch support, n.i.h., extramuralresearch support, non-u.s. gov'tresearch support, u.s. gov't, p.h.s.2011 Jan2010 12 19importedErratum in : Nat Genet. 2011 Oct;43(10):1040

    Genetic and Ethiopatogenetic Aspects of the Restless Legs Syndrome

    No full text
    The restless legs syndrome (RLS) is a sensomotor disoder characterized by urge to move lower extremities and this urge is usualy associated with unpleasnat sensations. The symtoms of RLS are alleviated with movement and, on the contrary, worsen during rest. The urge presents circadian rhytmicity peaking in the evening and the first half of night. The diagnosis of RLS is set according to patients' history fulfilling the essential criteria. The prevalence of RLS is quite high in western countries about 11%, women being affected twice as often as men. The disease has two forms, secondary and idiopathic. In the idiopathic RLS, positive family history is observed at about 50% of cases. There are already 3 genetic susceptibility loci on chromosomes 12, 14 and 9 published to be linked with RLS (RLS1, RLS2 a RLS3). Furhter 2 new loci were identified on chromosomes 17 and 4 insofar unpublished study. The current opinion suggests a complex model of inheritance in RLS. The aim of this project was to compare clinical and laboratory parameters in sporadic to familiar RLS and in families affected by RLS to confirm linkage previously detected loci, and eventually discover new susceptibility loci. The RLS patients were appart clinical evaluation examined with a set of hematological and biochemical tests, incuding..
    corecore