46 research outputs found

    Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase

    Get PDF
    A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis—an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.National Institutes of Health (U.S.) (Grant R01CA103866)National Institutes of Health (U.S.) (Grant R37AI047389

    Body fatness and sex steroid hormone concentrations in US men: results from NHANES III

    Get PDF
    Objective: Obesity is associated with a variety of chronic diseases, including cancer, which may partly be explained by its influence on sex steroid hormone concentrations. Whether different measures of obesity, i.e., body mass index (BMI), waist circumference, and percent body fat were differentially associated with circulating levels of sex steroid hormones was examined in 1,265 men, aged 20-90+years old, attending the morning examination session of the Third National Health and Nutrition Examination Survey (NHANES III). Materials and methods: Serum hormones were measured by immunoassay. Weight, height, and waist circumference were measured by trained staff. Percent body fat was estimated from bioelectrical impedance. Multivariate linear regression was used to estimate associations between body fatness measures and hormone levels. Results: Total and free testosterone and sex hormone binding globulin concentrations decreased, whereas total and free estradiol increased with increasing BMI, waist circumference, and percent body fat (all p trend<0.05). The magnitude of change in these hormones was similar for a one-quartile increase in each body fatness measure. Conclusion: Measured BMI, waist circumference, and percent body fat led to similar inferences about their association with hormone levels in me

    Dihydropyrimidine Accumulation Is Required for the Epithelial-Mesenchymal Transition

    Get PDF
    It is increasingly appreciated that oncogenic transformation alters cellular metabolism to facilitate cell proliferation, but less is known about the metabolic changes that promote cancer cell aggressiveness. Here, we analyzed metabolic gene expression in cancer cell lines and found that a set of high-grade carcinoma lines expressing mesenchymal markers share a unique 44 gene signature, designated the “mesenchymal metabolic signature” (MMS). A FACS-based shRNA screen identified several MMS genes as essential for the epithelial-mesenchymal transition (EMT), but not for cell proliferation. Dihydropyrimidine dehydrogenase (DPYD), a pyrimidine-degrading enzyme, was highly expressed upon EMT induction and was necessary for cells to acquire mesenchymal characteristics in vitro and for tumorigenic cells to extravasate into the mouse lung. This role of DPYD was mediated through its catalytic activity and enzymatic products, the dihydropyrimidines. Thus, we identify metabolic processes essential for the EMT, a program associated with the acquisition of metastatic and aggressive cancer cell traits.United States. National Institutes of Health (RO1 CA103866)United States. National Institutes of Health (AI047389)United States. National Institutes of Health (K99 CA168940)American Cancer Society (PF-12-099-01-TGB)American Cancer Society (PF-13-356-01-TBE)United States. Department of Defense (BC123066)United States. National Institutes of Health (CA112967)United States. National Institutes of Health (ES015339

    Computational modelling of NF-ÎșB activation by IL-1RI and its co-receptor TILRR, predicts a role for Cytoskeletal Sequestration of IÎșBα in inflammatory signalling.

    Get PDF
    The transcription factor NF-ÎșB (nuclear factor kappa B) is activated by Toll-like receptors and controlled by mechanotransduction and changes in the cytoskeleton. In this study we combine 3-D predictive protein modelling and in vitro experiments with in silico simulations to determine the role of the cytoskeleton in regulation of NF-ÎșB. Simulations used a comprehensive agent-based model of the NF-ÎșB pathway, which includes the type 1 IL-1 receptor (IL-1R1) complex and signalling intermediates, as well as cytoskeletal components. Agent based modelling relies on in silico reproductions of systems through the interactions of its components, and provides a reliable tool in investigations of biological processes, which require spatial considerations and involve complex formation and translocation of regulatory components. We show that our model faithfully reproduces the multiple steps comprising the NF-ÎșB pathway, and provides a framework from which we can explore novel aspects of the system. The analysis, using 3-D predictive protein modelling and in vitro assays, demonstrated that the NF-ÎșB inhibitor, IÎșBα is sequestered to the actin/spectrin complex within the cytoskeleton of the resting cell, and released during IL-1 stimulation, through a process controlled by the IL-1RI co-receptor TILRR (Toll-like and IL-1 receptor regulator). In silico simulations using the agent-based model predict that the cytoskeletal pool of IÎșBα is released to adjust signal amplification in relation to input levels. The results suggest that the process provides a mechanism for signal calibration and enables efficient, activation-sensitive regulation of NF-ÎșB and inflammatory responses

    Radiation exposure from Chest CT: Issues and Strategies

    Get PDF
    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    To play or not to play? That’s a resource abundance question

    Get PDF
    Although play occurs in a wide variety of animals, models of the origins of play behavior are lacking. We propose a novel computational model exploring the evolution of non-social frivolous play. Asexually reproducing semelparous animals can either rest or forage. Foraging occurs when an organism is below an energy threshold. Success is determined by the combination of skill and availability of resources, which declines over time but replenishes for each generation. Play was introduced as a mutant strategy: a frivolous activity that uses energy and increases the probability of dying over resting with no direct fitness benefit. Simulations show that play behavior becomes fixed in the population and the time spent playing is maintained at a low rate in spite of its costly nature. When play behavior is functional by increasing foraging ability, it evolves quickly and the time individuals spend playing increases, but eventually the population of players collapses and play disappears. We suggest a mechanism underlying the origins of adaptive play from non-adaptive behavior when resources expand. Initially play acts as a spiteful behavior in that playing individuals suffer a direct cost to their fitness, but also may incur even greater costs to other individuals in the population
    corecore