71 research outputs found

    More than just halo mass: Modelling how the red galaxy fraction depends on multiscale density in a HOD framework

    Full text link
    The fraction of galaxies with red colours depends sensitively on environment, and on the way in which environment is measured. To distinguish competing theories for the quenching of star formation, a robust and complete description of environment is required, to be applied to a large sample of galaxies. The environment of galaxies can be described using the density field of neighbours on multiple scales - the multiscale density field. We are using the Millennium simulation and a simple HOD prescription which describes the multiscale density field of Sloan Digital Sky Survey DR7 galaxies to investigate the dependence of the fraction of red galaxies on the environment. Using a volume limited sample where we have sufficient galaxies in narrow density bins, we have more dynamic range in halo mass and density for satellite galaxies than for central galaxies. Therefore we model the red fraction of central galaxies as a constant while we use a functional form to describe the red fraction of satellites as a function of halo mass which allows us to distinguish a sharp from a gradual transition. While it is clear that the data can only be explained by a gradual transition, an analysis of the multiscale density field on different scales suggests that colour segregation within the haloes is needed to explain the results. We also rule out a sharp transition for central galaxies, within the halo mass range sampled.Comment: 24 pages, 21 figures, accepted for publication by MNRA

    The Hierarchical Origins of Observed Galaxy Morphology

    Full text link
    Galaxies grow primarily via accretion-driven star formation in discs and merger-driven growth of bulges. These processes are implicit in semi-analytical models of galaxy formation, with bulge growth in particular relating directly to the hierarchical build-up of halos and their galaxies. In this paper, we consider several implementations of two semi-analytical models. Focusing on implementations in which bulges are formed during mergers only, we examine the fractions of elliptical galaxies and both passive and star-forming disk galaxies as functions of stellar and halo mass, for central and satellite systems. This is compared to an observational cross-matched SDSS+RC3 z ~ 0 sample of galaxies with accurate visual morphological classifications and M_{stellar} > 10^10.5 M_{sol}. The models qualitatively reproduce the observed increase of elliptical fraction with stellar mass, and with halo mass for central galaxies, supporting the idea that observed ellipticals form during major mergers. However, the overall elliptical fraction produced by the models is much too high compared with the z ~ 0 data. Since the "passive" -- i.e. non-star-forming -- fractions are approximately reproduced, and since the fraction which are star-forming disc galaxies is also reproduced, the problem is that the models overproduce ellipticals at the expense of passive S0 and spiral galaxies. Bulge-growth implementations (tuned to reproduce simulations) which allow the survival of residual discs in major mergers still destroy too much of the disc. Increasing the lifetime of satellites, or allowing significant disc regrowth around merger remnants, merely increases the fraction of star-forming disc galaxies. Instead, it seems necessary to reduce the mass ratios of merging galaxies, so that most mergers produce modest bulge growth in disc-galaxy remnants instead of ellipticals. [Abridged]Comment: latex, 20 pages, 13 figures. Accepted by Monthly Notices. Source package includes full version of Table 1 from paper (file sdssrc3_table_for_paper.tab

    On the influence of environment on star forming galaxies

    Get PDF
    We use our state-of-the-art semi analytic model for GAlaxy Evolution and Assembly (GAEA), and observational measurements of nearby galaxies to study the influence of the environment on the gas content and gaseous/stellar disc sizes of star-forming galaxies. We analyse the origin of differences between physical properties of satellites and those of their central counterparts, identified by matching the Vmax of their host haloes at the accretion time of the satellites. Our model reproduces nicely the differences between centrals and satellites measured for the HI mass, size of the star-forming region, and stellar radii. In contrast, our model predicts larger differences with respect to data for the molecular gas mass and star formation rate. By analysing the progenitors of central and satellite model galaxies, we find that differences in the gas content arise after accretion, and can be entirely ascribed to the instantaneous stripping of the hot gas reservoir. The suppression of cold gas replenishment via cooling and star formation leads to a reduction of the cold gas and of its density. Therefore, more molecular gas is lost than lower density HI gas, and model satellites have less molecular gas and lower star formation rates than observed satellites. We argue that these disagreements could be largely resolved with the inclusion of a proper treatment for ram-pressure stripping of cold gas and a more gradual stripping of the hot gas reservoir. A more sophisticated treatment of angular momentum exchanges, accounting for the multi-phase nature of the gaseous disc is also required.Comment: 15 pages, 9 figures, accepted for publication in MNRA

    The GEEC2 spectroscopic survey of Galaxy Groups at 0.8<z<10.8<z<1

    Full text link
    We present the data release of the Gemini-South GMOS spectroscopy in the fields of 11 galaxy groups at 0.8<z<10.8<z<1, within the COSMOS field. This forms the basis of the Galaxy Environment Evolution Collaboration 2 (GEEC2) project to study galaxy evolution in haloes with M1013MM\sim 10^{13}M_\odot across cosmic time. The final sample includes 162162 spectroscopically--confirmed members with R50R50 per cent complete for galaxies within the virial radius, and with stellar mass Mstar>1010.3MM_{\rm star}>10^{10.3}M_\odot. Including galaxies with photometric redshifts we have an effective sample size of 400\sim 400 galaxies within the virial radii of these groups. We present group velocity dispersions, dynamical and stellar masses. Combining with the GCLASS sample of more massive clusters at the same redshift we find the total stellar mass is strongly correlated with the dynamical mass, with logM200=1.20(logMstar12)+14.07\log{M_{200}}=1.20\left(\log{M_{\rm star}}-12\right)+14.07. This stellar fraction of  1~\sim 1 per cent is lower than predicted by some halo occupation distribution models, though the weak dependence on halo mass is in good agreement. Most groups have an easily identifiable most massive galaxy (MMG) near the centre of the galaxy distribution, and we present the spectroscopic properties and surface brightness fits to these galaxies. The total stellar mass distribution in the groups, excluding the MMG, compares well with an NFW profile with concentration 44, for galaxies beyond 0.2R200\sim 0.2R_{200}. This is more concentrated than the number density distribution, demonstrating that there is some mass segregation.Comment: Accepted for publication in MNRAS. The appendix is omitted due to large figures. The full version will be available from the MNRAS website and from http://quixote.uwaterloo.ca/~mbalogh/papers/GEEC2_data.pdf. Long data tables are available from MNRAS or by contacting the first autho

    Evolution in the Disks and Bulges of Group Galaxies since z=0.4

    Full text link
    We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer disk--dominated galaxies than the field, while by z=0.1 this difference has increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disk population. At both redshifts, the disks of group galaxies have similar scaling relations and show similar median asymmetries as the disks of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge--dominated galaxies is 6 +/- 3 % higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z=0.4 and z=0 using the semi-analytic galaxy catalogues of Bower et al (2006). This model accurately reproduces the B/T distributions of the group and field at z=0.1. However, the model does not reproduce our finding that the deficit of disks in groups has increased significantly since z=0.4.Comment: Accepted for publication in MNRAS. 20 pages, 17 figure

    The definition of environment and its relation to the quenching of galaxies at z=1-2 in a hierarchical Universe

    Get PDF
    A well calibrated method to describe the environment of galaxies at all redshifts is essential for the study of structure formation. Such a calibration should include well understood correlations with halo mass, and the possibility to identify galaxies which dominate their potential well (centrals), and their satellites. Focusing on z = 1 and 2 we propose a method of environmental calibration which can be applied to the next generation of low to medium resolution spectroscopic surveys. Using an up-to-date semi-analytic model of galaxy formation, we measure the local density of galaxies in fixed apertures on different scales. There is a clear correlation of density with halo mass for satellite galaxies, while a significant population of low mass centrals is found at high densities in the neighbourhood of massive haloes. In this case the density simply traces the mass of the most massive halo within the aperture. To identify central and satellite galaxies, we apply an observationally motivated stellar mass rank method which is both highly pure and complete, especially in the more massive haloes where such a division is most meaningful. Finally we examine a test case for the recovery of environmental trends: the passive fraction of galaxies and its dependence on stellar and halo mass for centrals and satellites. With careful calibration, observationally defined quantities do a good job of recovering known trends in the model. This result stands even with reduced redshift accuracy, provided the sample is deep enough to preserve a wide dynamic range of density.Comment: 19 pages, 12 figures, accepted for publication in MNRA

    Impact of Redshift Information on Cosmological Applications with Next-Generation Radio Surveys

    Get PDF
    In this paper, we explore how the forthcoming generation of large-scale radio continuum surveys, with the inclusion of some degree of redshift information, can constrain cosmological parameters. By cross-matching these radio surveys with shallow optical to near-infrared surveys, we can essentially separate the source distribution into a low- and a high-redshift sample, thus providing a constraint on the evolution of cosmological parameters such as those related to dark energy. We examine two radio surveys, the Evolutionary Map of the Universe (EMU) and the Westerbork Observations of the Deep APERTIF Northern sky (WODAN). A crucial advantage is their combined potential to provide a deep, full-sky survey. The surveys used for the cross-identifications are SkyMapper and SDSS, for the southern and northern skies, respectively. We concentrate on the galaxy clustering angular power spectrum as our benchmark observable, and find that the possibility of including such low redshift information yields major improvements in the determination of cosmological parameters. With this approach, and provided a good knowledge of the galaxy bias evolution, we are able to put strict constraints on the dark energy parameters, i.e. w_0=-0.9+/-0.041 and w_a=-0.24+/-0.13, with type Ia supernovae and CMB priors (with a one-parameter bias in this case); this corresponds to a Figure of Merit (FoM) > 600, which is twice better than what is obtained by using only the cross-identified sources and greater than four time better than the case without any redshift information at all.Comment: 12 pages, 6 figures, 6 tables; accepted for publication in MNRA

    First results from the VIRIAL survey: the stellar content of UVJUVJ-selected quiescent galaxies at 1.5<z<21.5 < z < 2 from KMOS

    Get PDF
    We investigate the stellar populations of 25 massive, galaxies (log[M/M]10.9\log[M_\ast/M_\odot] \geq 10.9) at 1.5<z<21.5 < z < 2 using data obtained with the K-band Multi-Object Spectrograph (KMOS) on the ESO VLT. Targets were selected to be quiescent based on their broadband colors and redshifts using data from the 3D-HST grism survey. The mean redshift of our sample is zˉ=1.75\bar{z} = 1.75, where KMOS YJ-band data probe age- and metallicity-sensitive absorption features in the rest-frame optical, including the GG band, Fe I, and high-order Balmer lines. Fitting simple stellar population models to a stack of our KMOS spectra, we derive a mean age of 1.030.08+0.131.03^{+0.13}_{-0.08} Gyr. We confirm previous results suggesting a correlation between color and age for quiescent galaxies, finding mean ages of 1.220.19+0.561.22^{+0.56}_{-0.19} Gyr and 0.850.05+0.080.85^{+0.08}_{-0.05} Gyr for the reddest and bluest galaxies in our sample. Combining our KMOS measurements with those obtained from previous studies at 0.2<z<20.2 < z < 2 we find evidence for a 232-3 Gyr spread in the formation epoch of massive galaxies. At z<1z < 1 the measured stellar ages are consistent with passive evolution, while at 1<z21 < z \lesssim2 they appear to saturate at \sim1 Gyr, which likely reflects changing demographics of the (mean) progenitor population. By comparing to star-formation histories inferred for "normal" star-forming galaxies, we show that the timescales required to form massive galaxies at z1.5z \gtrsim 1.5 are consistent with the enhanced α\alpha-element abundances found in massive local early-type galaxies.Comment: 6 pages, 5 figures, accepted for publication in ApJ
    corecore