10 research outputs found

    Spatial frequency tuned covariance channels for red–green and luminance-modulated gratings: psychophysical data from human adults

    Get PDF
    AbstractBoth chromatic and luminance-modulated stimuli are served by multiple spatial-frequency-tuned channels. This experiment investigated the independence versus interdependence of spatial frequency channels that serve the detection of red–green chromatic versus yellow–black luminance-modulated stimuli at low spatial frequencies. Contrast thresholds for both chromatic and luminance-modulated gratings were measured within 12 individual subjects using a repeated-measures design. Spatial frequencies ranged from 0.27 to 2.16 c/deg. A covariance structure analysis of individual differences was applied to the data. We computed statistical sources of individual variability, used them to define covariance channels, and determined the number and frequency tuning of these channels. For luminance-modulated gratings, two covariance channels were found, including one above and one below 1 c/deg [cf. Peterzell, & Teller (1996). Individual differences in contrast sensitivity functions: the coarsest spatial pattern analyzer. Vision Research, 36, 3077–3085]. For chromatic gratings, correlations between thresholds for most spatial frequencies were uniformly high, yielding a single covariance channel covering all but the highest spatial frequency tested. A combined analysis of both data sets recovered the same three covariance channels, and showed that detection thresholds for low-frequency red–green chromatic and luminance-modulated stimuli are served by separate, statistically independent processes

    What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?

    Get PDF
    AbstractIn order to investigate the mechanisms underlying green/red equiluminance matches in human observers and their relationship to mechanisms subserving luminance and/or chromatic (green/red) contrast sensitivity, we tested 21 human subjects along these dimensions at 16 different spatial and temporal frequencies (spatial frequency, 0.25–2 c/deg; temporal frequency, 2–16 Hz) and applied factor analysis to extract mechanisms underlying the data set. The results from our factor analysis revealed separate sources of variability for green/red equiluminance, luminance sensitivity and chromatic sensitivity, thus suggesting separate mechanisms underlying each of the three main conditions. When factor analysis was applied separately to green/red equiluminance data, two temporally-tuned factors were revealed (factor 1, 2–4 Hz; factor 2, 8–16 Hz), suggesting the existence of separate mechanisms underlying equiluminance settings at low versus high temporal frequencies. In addition, although the three main conditions remained separate in our factor analysis of the entire data set, our correlation matrix nonetheless revealed systematic correlations between equiluminance settings and luminance sensitivity at high temporal frequencies, and between equiluminance settings and chromatic sensitivity at low temporal frequencies. Taken together, these data suggest that the high temporal frequency factor underlying green/red equiluminance is governed predominantly by luminance mechanisms, while the low temporal frequency factor receives contribution from chromatic mechanisms
    corecore