225 research outputs found

    The TRiC/CCT chaperone is implicated in Alzheimer's disease based on patient GWAS and an RNAi screen in Aβ-expressing Caenorhabditis elegans.

    Get PDF
    The human Aβ peptide causes progressive paralysis when expressed in the muscles of the nematode worm, C. elegans. We have exploited this model of Aβ toxicity by carrying out an RNAi screen to identify genes whose reduced expression modifies the severity of this locomotor phenotype. Our initial finding was that none of the human orthologues of these worm genes is identical with the genome-wide significant GWAS genes reported to date (the "white zone"); moreover there was no identity between worm screen hits and the longer list of GWAS genes which included those with borderline levels of significance (the "grey zone"). This indicates that Aβ toxicity should not be considered as equivalent to sporadic AD. To increase the sensitivity of our analysis, we then considered the physical interactors (+1 interactome) of the products of the genes in both the worm and the white+grey zone lists. When we consider these worm and GWAS gene lists we find that 4 of the 60 worm genes have a +1 interactome overlap that is larger than expected by chance. Two of these genes form a chaperonin complex, the third is closely associated with this complex and the fourth gene codes for actin, the major substrate of the same chaperonin

    A7DB: a relational database for mutational, physiological and pharmacological data related to the α7 nicotinic acetylcholine receptor

    Get PDF
    BACKGROUND: Nicotinic acetylcholine receptors (nAChRs) are pentameric proteins that are important drug targets for a variety of diseases including Alzheimer's, schizophrenia and various forms of epilepsy. One of the most intensively studied nAChR subunits in recent years has been α7. This subunit can form functional homomeric pentamers (α7)(5), which can make interpretation of physiological and structural data much simpler. The growing amount of structural, pharmacological and physiological data for these receptors indicates the need for a dedicated and accurate database to provide a means to access this information in a coherent manner. DESCRIPTION: A7DB is a new relational database of manually curated experimental physiological data associated with the α7 nAChR. It aims to store as much of the pharmacology, physiology and structural data pertaining to the α7 nAChR. The data is accessed via web interface that allows a user to search the data in multiple ways: 1) a simple text query 2) an incremental query builder 3) an interactive query builder and 4) a file-based uploadable query. It currently holds more than 460 separately reported experiments on over 85 mutations. CONCLUSIONS: A7DB will be a useful tool to molecular biologists and bioinformaticians not only working on the α7 receptor family of proteins but also in the more general context of nicotinic receptor modelling. Furthermore it sets a precedent for expansion with the inclusion of all nicotinic receptor families and eventually all cys-loop receptor families

    Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan

    Get PDF
    Spinal muscular atrophy is the most common genetic cause of infant mortality and is characterized by degeneration of lower motor neurons leading to muscle wasting. The causative gene has been identified as survival motor neuron (SMN). The invertebrate model organism Caenorhabditis elegans contains smn-1, the ortholog of human SMN. Caenorhabditis elegans smn-1 is expressed in various tissues including the nervous system and body wall muscle, and knockdown of smn-1 by RNA interference is embryonic lethal. Here we show that the smn-1(ok355) deletion, which removes most of smn-1 including the translation start site, produces a pleiotropic phenotype including late larval arrest, reduced lifespan, sterility as well as impaired locomotion and pharyngeal activity. Mutant nematodes develop to late larval stages due to maternal contribution of the smn-1 gene product that allows to study SMN-1 functions beyond embryogenesis. Neuronal, but not muscle-directed, expression of smn-1 partially rescues the smn-1(ok355) phenotype. Thus, the deletion mutant smn-1(ok355) provides a useful platform for functional analysis of an invertebrate ortholog of the human SMN protein

    Actions on mammalian and insect nicotinic acetylcholine receptors of harmonine-containing alkaloid extracts from the harlequin ladybird Harmonia axyridis

    Get PDF
    © 2020 Elsevier Inc. The harlequin ladybird, Harmonia axyridis (H. axyridis), possesses a strong chemical defence that has contributed to its invasive success. Ladybird beetle defensive chemicals, secreted in response to stress and also found on the coating of laid eggs, are rich in alkaloids that are thought to be responsible for this beetle's toxicity to other species. Recent studies have shown that alkaloids from several species of ladybird beetle can target nicotinic acetylcholine receptors (nAChRs) acting as receptor antagonists, hence we have explored the actions of alkaloids of the ladybird H. axyridis on both mammalian and insect nAChRs. Electrophysiological studies on native and functionally expressed recombinant nAChRs were used to establish whether an alkaloid extract from H. axyridis (HAE) targeted nAChRs and whether any selectivity exists for insect over mammalian receptors of this type. HAE was found to be an inhibitor of all nAChRs tested with the voltage-dependence of inhibition and the effect on ACh EC50 differing between nAChR subtypes. Our finding that an HAE fraction consisting almost entirely of harmonine had a strong inhibitory effect points to this alkaloid as a key component of nAChR inhibitory actions. Comparison of HAE inhibition between the mammalian and insect nAChRs investigated indicates some preference for the insect nAChR supporting the view that investigation of ladybird alkaloids shows promise as a method for identifying natural product leads for future insecticide development

    Genomic Insights Into the Ixodes Scapularis Tick Vector of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ~57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host \u27questing\u27, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    Automated phenotyping of mosquito larvae enables high-throughput screening for novel larvicides and offers potential for smartphone-based detection of larval insecticide resistance

    Get PDF
    Pyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon, provides a robust system for measuring larval motility in Anopheles gambiae (and An. coluzzi) as well as Aedes aegypti with the capacity for high-throughput screening for new larvicides. By this means, we reliably quantified both time- and concentration-dependent actions of chemical insecticides faster than using the WHO standard larval assay. We illustrate the effectiveness of the system using an established larvicide (temephos) and demonstrate its capacity for library-scale chemical screening using the Medicines for Malaria Venture (MMV) Pathogen Box library. As a proof-of-principle, this library screen identified a compound, subsequently confirmed to be tolfenpyrad, as an effective larvicide. We have also used the INVAPP / Paragon system to compare responses in larvae derived from WHO classified deltamethrin resistant and sensitive mosquitoes. We show how this approach to monitoring larval response to insecticides can be adapted for use with a smartphone camera application and therefore has potential for further development as a simple portable field-assay with associated real-time, geo-located information to identify hotspots

    Actions of Camptothecin Derivatives on Larvae and Adults of the Arboviral Vector Aedes aegypti

    Get PDF
    Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and Onchocerca volvulus endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of Aedes aegypti were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility. We identified rubitecan (a synthetic derivative of camptothecin) as a hit compound that reduced A. aegypti larval motility. Both rubitecan and camptothecin displayed concentration dependent reduction in larval motility with estimated EC50 of 25.5 ± 5.0 µM and 22.3 ± 5.4 µM, respectively. We extended our investigation to adult mosquitoes and found that camptothecin increased lethality when delivered in a blood meal to A. aegypti adults at 100 µM and 10 µM, and completely blocked egg laying when fed at 100 µM. Camptothecin and its derivatives are inhibitors of topoisomerase I, have known activity against several agricultural pests, and are also approved for the treatment of several cancers. Crucially, they can inhibit Zika virus replication in human cells, so there is potential for dual targeting of both the vector and an important arbovirus that it carries

    The fungal alkaloid Okaramine-B activates an L-glutamate-gated chloride channel from Ixodes scapularis, a tick vector of Lyme disease

    Get PDF
    This work was supported by Merial Ltd., The Japan Society for the Promotion of Sciences (KAKENHI, Grant number: 17H01472) and The UK Medical Research Council.A novel L-glutamate-gated anion channel (IscaGluCl1) has been cloned from the black-legged tick, Ixodes scapularis, which transmits multiple pathogens including the agents of Lyme disease and human granulocytic anaplasmosis. When mRNA encoding IscaGluCl1 was expressed in Xenopus laevis oocytes, we detected robust 50–400 nA currents in response to 100 μM L-glutamate. Responses to L-glutamate were concentration-dependent (pEC50 3.64 ± 0.11). Ibotenate was a partial agonist on IscaGluCl1. We detected no response to 100 μM aspartate, quisqualate, kainate, AMPA or NMDA. Ivermectin at 1 μM activated IscaGluCl1, whereas picrotoxinin (pIC50 6.20 ± 0.04) and the phenylpyrazole fipronil (pIC50 6.90 ± 0.04) showed concentration-dependent block of the L-glutamate response. The indole alkaloid okaramine B, isolated from fermentation products of Penicillium simplicissimum (strain AK40) grown on okara pulp, activated IscaGluCl1 in a concentration-dependent manner (pEC50 5.43 ± 0.43) and may serve as a candidate lead compound for the development of new acaricides.Publisher PDFPeer reviewe

    Genome of the house fly, <i>Musca domestica</i> L., a global vector of diseases with adaptations to a septic environment

    Get PDF
    Background: Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. Results: We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation. Conclusions: This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies
    corecore