2,274 research outputs found

    SEC as Environmentalist: The Reluctant Champion

    Get PDF

    A Liquid Model Analogue for Black Hole Thermodynamics

    Get PDF
    We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.Comment: 20 pages and 6 Encapsulated PostScript figure

    Magellan LDSS3 emission confirmation of galaxies hosting metal-rich Lyman-alpha absorption systems

    Get PDF
    Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope, we target {candidate absorption host galaxies} detected in deep optical imaging {(reaching limiting apparent magnitudes of 23.0-26.5 in g,r,i,g, r, i, and zz filters) in the fields of three QSOs, each of which shows the presence of high metallicity, high NHIN_{\rm HI} absorption systems in their spectra (Q0826-2230: zabsz_{abs}=0.9110, Q1323-0021: zabs=0.7160z_{abs}=0.7160, Q1436-0051: zabs=0.7377,0.9281z_{abs}=0.7377, 0.9281). We confirm three host galaxies {at redshifts 0.7387, 0.7401, and 0.9286} for two of the Lyman-α\alpha absorption systems (one with two galaxies interacting). For these systems, we are able to determine the star formation rates (SFRs); impact parameters (from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity.} Based on previous photometry, we find these galaxies have L>>L∗^{\ast}. The [O II] SFRs for these galaxies are in the range 11−2511-25 M⊙_{\odot} yr−1^{-1} {(uncorrected for dust)}, while the impact parameters lie in the range 35−5435-54 kpc. {Despite the fact that we have confirmed galaxies at 50 kpc from the QSO, no gradient in metallicity is indicated between the absorption metallicity along the QSO line of sight and the emission line metallicity in the galaxies.} We confirm the anti-correlation between impact parameter and NHIN_{\rm HI} from the literature. We also report the emission redshift of five other galaxies: three at zem>zQSOz_{em}>z_{QSO}, and two (L<<L∗^{\ast}) at zem<zQSOz_{em}<z_{QSO} not corresponding to any known absorption systems.Comment: 14 pages, 7 figures, 4 tables, accepted to MNRA

    Positivity of Entropy in the Semi-Classical Theory of Black Holes and Radiation

    Get PDF
    Quantum stress-energy tensors of fields renormalized on a Schwarzschild background violate the classical energy conditions near the black hole. Nevertheless, the associated equilibrium thermodynamical entropy ΔS\Delta S by which such fields augment the usual black hole entropy is found to be positive. More precisely, the derivative of ΔS\Delta S with respect to radius, at fixed black hole mass, is found to vanish at the horizon for {\it all} regular renormalized stress-energy quantum tensors. For the cases of conformal scalar fields and U(1) gauge fields, the corresponding second derivative is positive, indicating that ΔS\Delta S has a local minimum there. Explicit calculation shows that indeed ΔS\Delta S increases monotonically for increasing radius and is positive. (The same conclusions hold for a massless spin 1/2 field, but the accuracy of the stress-energy tensor we employ has not been confirmed, in contrast to the scalar and vector cases). None of these results would hold if the back-reaction of the radiation on the spacetime geometry were ignored; consequently, one must regard ΔS\Delta S as arising from both the radiation fields and their effects on the gravitational field. The back-reaction, no matter how "small",Comment: 19 pages, RevTe

    The Clustering of AGN in the Sloan Digital Sky Survey

    Get PDF
    We present the two--point correlation function (2PCF) of narrow-line active galactic nuclei (AGN) selected within the First Data Release of the Sloan Digital Sky Survey. Using a sample of 13605 AGN in the redshift range 0.055 < z < 0.2, we find that the AGN auto--correlation function is consistent with the observed galaxy auto--correlation function on scales 0.2h^{-1}Mpc to >100h^{-1}Mpc. The AGN hosts trace an intermediate population of galaxies and are not detected in either the bluest (youngest) disk--dominated galaxies or many of the reddest (oldest) galaxies. We show that the AGN 2PCF is dependent on the luminosity of the narrow [OIII] emission line (L_{[OIII]}), with low L_{[OIII]} AGN having a higher clustering amplitude than high L_{[OIII]} AGN. This is consistent with lower activity AGN residing in more massive galaxies than higher activity AGN, and L_{[OIII]} providing a good indicator of the fueling rate. Using a model relating halo mass to black hole mass in cosmological simulations, we show that AGN hosted by ~ 10^{12} M_{odot} dark matter halos have a 2PCF that matches that of the observed sample. This mass scale implies a mean black hole mass for the sample of M_{BH} ~ 10^8 M_{odot}.Comment: 5 pages, 4 figures. Accepted for publication in ApJ

    Effective Potential of a Black Hole in Thermal Equilibrium with Quantum Fields

    Get PDF
    Expectation values of one-loop renormalized thermal equilibrium stress-energy tensors of free conformal scalars, spin-12{1 \over 2} fermions and U(1) gauge fields on a Schwarzschild black hole background are used as sources in the semi-classical Einstein equation. The back-reaction and new equilibrium metric are solved for at O(ℏ)O({\hbar}) for each spin field. The nature of the modified black hole spacetime is revealed through calculations of the effective potential for null and timelike orbits. Significant novel features affecting the motions of both massive and massless test particles show up at lowest order in Ï”=(MPl/M)2<1\epsilon= (M_{Pl}/M)^2 < 1, where MM is the renormalized black hole mass, and MPlM_{Pl} is the Planck mass. Specifically, we find the tendency for \underline{stable} circular photon orbits, an increase in the black hole capture cross sections, and the existence of a gravitationally repulsive region associated with the black hole which is generated from the U(1) back-reaction. We also consider the back-reaction arising from multiple fields, which will be useful for treating a black hole in thermal equilibrium with field ensembles belonging to gauge theories.Comment: 25 pages (not including seven figures), VAND-TH-93-6. Typed in Latex, uses RevTex macro

    Dynamical Confirmation of SDSS Weak Lensing Scaling Laws

    Get PDF
    Galaxy masses can be estimated by a variety of methods; each applicable in different circumstances, and each suffering from different systematic uncertainties. Confirmation of results obtained by one technique with analysis by another is particularly important. Recent SDSS weak lensing measurements of the projected-mass correlation function reveal a linear relation between galaxy luminosities and the depth of their dark matter halos (measured on 260 \hinv kpc scales). In this work we use an entirely independent dynamical method to confirm these results. We begin by assembling a sample of 618 relatively isolated host galaxies, surrounded by a total of 1225 substantially fainter satellites. We observe the mean dynamical effect of these hosts on the motions of their satellites by assembling velocity difference histograms. Dividing the sample by host properties, we find significant variations in satellite velocity dispersion with host luminosity. We quantify these variations using a simple dynamical model, measuring \mtsd a dynamical mass within 260 \hinv kpc. The appropriateness of this mass reconstruction is checked by conducting a similar analysis within an N-body simulation. Comparison between the dynamical and lensing mass-to-light scalings shows reasonable agreement, providing some quantitative confirmation for the lensing results.Comment: 7 pages, 3 figures, accepted for publication in ApJ Letter
    • 

    corecore