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ABSTRACT

Expectation values of one-loop renormalized thermal equilibrium stress-energy

tensors of free conformal scalars, spin-12 fermions and U(1) gauge fields on a

Schwarzschild black hole background are used as sources in the semi-classical Einstein

equation. The back-reaction and new equilibrium metric are solved for at O(h̄) for

each spin field. The nature of the modified black hole spacetime is revealed through

calculations of the effective potential for null and timelike orbits. Significant novel

features affecting the motions of both massive and massless test particles show up

at lowest order in ǫ = (MP l/M)2 < 1, where M is the renormalized black hole mass,

and MP l is the Planck mass. Specifically, we find the tendency for stable circular

photon orbits, an increase in the black hole capture cross sections, and the existence

of a gravitationally repulsive region associated with the black hole which is gener-

ated from the U(1) back-reaction. We also consider the back-reaction arising from

multiple fields, which will be useful for treating a black hole in thermal equilibrium

with field ensembles belonging to gauge theories.
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I. Introduction

A black hole can exist in thermodynamical equilibrium provided it is surrounded by

radiation with a suitable distribution of stress-energy. Appropriate heat baths are composed

of quantum fields interacting with the black hole geometry. The gravitational effect of the

heat bath is characterized by its gravitationally induced renormalized stress-energy tensor.

One can use the expectation value of stress-energy tensors of quantum fields renormalized

over the classical spacetime geometry of a black hole as the source in the semi-classical

Einstein equation,

Gµ
ν = 8π < T µ

ν >renormalized, (1)

to calculate the change induced by the stress-energy tensor on the black hole’s spacetime

metric. This is the back-reaction problem associated with the spacetime geometry of a black

hole in thermal equilibrium.

In this paper we shall use solutions of the back-reaction (1) to investigate in detail the

modifications to the Schwarzschild geometry arising from the interaction between the black

hole and various types of quantum fields. For source terms we take the one-loop quantum

stress-energy tensors computed for conformal scalars, massless spin-1
2
fermions and U(1)

gauge bosons. The nature of the modified spacetime geometry is revealed through the

effective potential which completely characterizes the motion of test particles moving in the

modified background. We calculate the effective potential for both massless and massive

test particles and separate out the back-reaction contributions coming from each spin type

(0, 1
2
, 1), because, as it turns out, there are important qualitative distinctions among the

various spins. Moreover, we will want to be able to discuss the back-reactions arising from

particular weighted sums of the separate spin-dependent cases in order to be able to address

the problem of black holes in equilibrium with a thermal ensemble containing the field

content of gauge theories of particle physics.

From the properties of the renormalized stress-energy tensors we employ and of the semi-

classical Einstein equation, we can obtain accurate fractional corrections to the metric to

O(ǫ), where ǫ = h̄M−2, MP l = h̄1/2 is the Planck mass and M is the mass of the black hole

(Units are chosen such that G = c = 1, but h̄ 6= 1 ). This means we will be restricted to

considering the O(ǫ) corrections to the effective potential. The effects we study clearly will
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only be of qualitative significance for small (hot) black holes, such as might have existed

in the early universe. Yet, already at this lowest order, important qualitative information

is contained in the effective potential. Indeed, as we will see, there is a general trend (for

each spin case) for the overall magnitude of the potential to decrease as the strength of the

back-reaction is increased (i.e., as ǫ → 1) or as the number of fields increases. For the cases

we have considered, the potentials all turn over at about ǫ ≈ 1/2 and tend toward local

minima, but then one is leaving the domain of validity of the calculation and the turn-over

effect is not unambiguously determined. In particular, this implies that the back-reaction

tends to lead to the existence of stable circular photon orbits for the null geodesics. For the

timelike geodesics, the back-reaction leads to the formation of stable circular orbits even

when the test particles have an angular momentum less than the critical value associated

with stable orbits for the classical Schwarzschild black hole.

Another important feature which shows up at O(ǫ) is a consequence of the gauge boson

back-reaction. For this case, and this case only, we find the back-reaction generates a

repulsive anti-gravity contribution to the net force in the region surrounding the renormalized

black hole event horizon. This repulsive component of the effective potential should not

be confused with the ordinary repulsive angular-momentum-dependent barrier term which

arises in all central force problems. Nor should it be confused with the reversal in sign of

the centripetal acceleration for a circular orbit close to an ordinary Schwarzschild hole [1].

Indeed, the existence of this new repulsive force is confirmed by an explicit calculation of

the acceleration of a test particle initially at rest (hence, with zero angular momentum).

In the absence of any back-reaction, the radial acceleration is proportional to −r̂, where r̂

is the outward unit radial vector. With the back-reaction, we find the O(ǫ) correction to

the acceleration is proportional to +r̂, from roughly r ≈ 2.8M out to r ≈ 8.6M , indicating

the presense of an outwardly directed force. This holds for a single gauge boson and for all

ǫ > 0.

The features mentioned so far reflect the physics of the back-reaction of a single species

(N = 1) of each field of a given spin. It is also interesting to consider the effect of the

back-reaction due to multiple fields (N > 1) of a given spin. This in fact is the situation

one expects to encounter when the black hole interacts with a thermal ensemble of fields
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belonging to multiplets (representations) of specific gauge groups which arise in modern

theories of particle physics. The effective potentials for multiple species are constructed

simply by scaling the N = 1 potential correction terms with numerical coefficients which

count the number, or multiplicity, of fields of a given spin that occur in the particular gauge

group. We will work in the lowest approximation where all matter and gauge fields are free.

One consequence of this multiple field back-reaction is that the new stable circular orbits

form for smaller values of the perturbation parameter ǫ than for the N = 1 cases. Although

the radius of the corresponding domain of perturbative validity of our calculation decreases

with increasing particle multiplicity, the new orbits all fall comfortably within these domains

for the cases we have considered. For the U(1) case, the presence of the repulsive “core”

and its effects become markedly pronounced when the number of gauge bosons interacting

with the black hole exceeds a certain critical value.

II. Stress-Energy Tensors and Solution of the Back-reaction

Exact one-loop stress-energy tensors renormalized on a Schwarzschild background have

been computed for conformal scalar fields and for U(1) gauge bosons, respectively, by

Howard, Howard and Candelas [2] and by Jensen and Ottewill [3]. Both these results can

be expressed in the form

< T µ
ν >renormalized=< T µ

ν >analytic +

(

h̄

π2(4M)4

)

∆µ
ν , (2)

where the analytic piece, in the case of the conformal scalar field, was first given by Page [4].

The term ∆µ
ν is obtained from a numerical mode sum. As this term is small in comparison to

the analytic piece, we do not include it in the calculations in this paper. This does not affect

any of our qualitative results because both pieces seperately obey the required regularity and

consistency conditions. Moreover, the analytic piece has the correct trace anomaly in both

cases. An analytic approximation for the stress-energy tensor of a massless spin-1
2
fermion

has been computed by Brown, Ottewill and Page [5]. As far as we are aware, its accuracy

has not been verified by an exact numerical analysis, unlike the scalar and vector cases.

Each of the above mentioned tensors has the asymptotic form of a flat spacetime radiation

stress-energy tensor at the uncorrected Hawking temperature (TH) at infinity of an ordinary
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Schwarzschild black hole:

T µ
ν → const.× diag(−3, 1, 1, 1)µν . (3)

In what follows, it is convenient to write the radial and lateral pressures of the U(1) radiation

at infinity as (no sum on i)

(T i
i )∞ ≡ 1

3
aT 4

H =
ǫ

48πKM2
, (4)

where K = 3840π, a = (π2/15h̄3), TH = h̄/(8πM) is the Hawking temperature at infinity,

and i = r, θ, or φ. The analytic expressions all satisfy ∇̂µT
µ
ν = 0 on the Schwarzschild

background.

The back-reaction induced by the scalar, spinor and vector fields is solved by calculating

the fractional corrections hα
ν to the metric, obtained by setting

gµν = ĝαµ[δ
α
ν + ǫ hα

ν ] (5)

in the semi-classical Einstein equation (1). We work in linear order in ǫ as required by

∇̂µT
µ
ν = 0 and ∇̂µ(δG

µ
ν) = 0, where δGµ

ν is the Einstein tensor linearized on a background

satisfying Ĝµ
ν = 0. The corrected geometry will be taken to be static and spherically sym-

metric. Working out the equations as in [6], we find the corrected metric can be written

as

ds2 = −
(

1− 2m(r)

r

)

(1 + 2ǫρ̄(r)) dt2 +

(

1− 2m(r)

r

)−1

dr2 + r2dΩ2, (6)

where dΩ2 is the standard metric of a normal round unit sphere. To obtain m(r) and ρ̄(r)

requires only simple radial integrals involving T t
t and T r

r . The angular components enter

linearized Einstein equations that hold automatically by virtue of ∇̂µT
µ
ν = 0 in a static

spherical geometry.

The mass function m(r) has the form

m(r) = M(1 + ǫ µ(r) + ǫ CK−1), (7)

with

µ(r) =
1

ǫM

∫ r

2M
(−T t

t ) 4πr̃
2 dr̃, (8)
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and C is an integration constant which serves to renormalize the bare Schwarzschild mass

M , as discussed in [7]. The metric is completed by a determination of ρ̄ which, like µ, can

be found from an elementary integration. Defining

K ρ̄ ≡ K ρ+ k, (9)

where k is a constant of integration, we have

ρ =
1

ǫ

∫ r

2M
(T r

r − T t
t )(r̃ − 2M)−14πr̃2 dr̃. (10)

Denote with a subscript “s”, “f” and “v” the metric functions and corresponding inte-

gration constants connected with the scalar, fermion and vector back-reactions, respectively.

Then, substituting the relevant components of the corresponding stress-energy tensors from

[2-5] into the formulas for µ(r) and ρ(r) yields (with w ≡ 2M/r)

K µs =
1

2
(
2

3
w−3 + 2w−2 + 6w−1 − 8 ln(w)− 10w − 6w2 + 22w3 − 44

3
). (11)

Kρs =
1

2

(

2

3
w−2 + 4w−1 − 8 ln(w)− 40

3
w − 10w2 − 28

3
w3 +

84

3

)

. (12)

for the conformal scalar field [6],

Kµf =
7

8

(

2

3
w−3 + 2w−2 + 6w−1 − 8 ln(w)− 90

7
w − 62

7
w2 +

46

3
w3 − 16

7

)

, (13)

Kρf =
7

8

(

2

3
w−2 + 4w−1 − 8 ln(w)− 200

21
w − 50

7
w2 − 52

7
w3 +

136

7

)

, (14)

for the massless spinor [7], and

K µv =
2

3
w−3 + 2w−2 + 6w−1 − 8 ln(w) + 210w − 26w2 +

166

3
w3 − 248. (15)

K ρv =
2

3
w−2 + 4w−1 − 8 ln(w) +

40

3
w + 10w2 + 4w3 − 32, (16)

for the U(1) vector field [8]. Note that at the horizon r = 2M , or w = 1, we have ρs(1) =

ρf (1) = ρv(1) = 0. The constant k for the scalar, spinor and vector is denoted by ks, kf and

kv, respectively, and will be determined below by a boundary condition.
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As pointed out in [6], the back-reaction problem (1) has no definite solution unless

boundary conditions are specified at a certain radius ro. Moreover, (3) indicates that the

stress-energy tensors are asymptotically constant, thus the combined system of the black

hole plus equilibrium quantum fields must be put into a finite “box” or cavity [7]. This is

to insure that the fractional corrections ǫhα
ν to the metric remain small for sufficiently large

radius. Obviously, the “box” is merely a device to provide reasonable boundary conditions

that mimic implantation of the hole into the universe. Under suitable conditions, as discussed

in [7], the specific boundary conditions should not affect our results significantly. In what

follows, we shall assume that the cavity radius is sufficiently large that the stress-energy

tensors we employ, which were computed for infinite space, are a good approximation. If

the radius ro were to approach the horizon, explicit size and boundary effects would have to

be taken into account in the construction of < Tµν >, as shown in [9,10].

One convenient way to fix the constants ks, kf and kv is to impose a microcanonical

boundary condition [6]. We fix ro and imagine placing there an ideal massless perfectly

reflecting wall. Outside ro, we then have an ordinary Schwarzschild spacetime

ds2 = −
(

1− 2m(ro)

r

)

dt2 +

(

1− 2m(ro)

r

)−1

dr2 + r2dΩ2, (17)

for r ≥ ro. Continuity of the three-metric induced by metrics (6) and (17) on the world tube

r = ro fixes the constant k, i.e., ks kf or kv, in ρ̄ by the relation

k = −K ρ(ro). (18)

There are finite discontinuities in the extrinsic curvature of the world tube r = ro [6], but

these, and other properties of the box wall, are of no interest in the present analysis, as argued

in [7]. The spacetime geometry, including back-reaction, is now completely determined by

(17) for r ≥ ro, and for r ≤ ro by

ds2 = −
(

1− 2m(r)

r

)

[1 + 2ǫ (ρ(r)− ρ(ro))]dt
2 +

(

1− 2m(r)

r

)−1

dr2 + r2 dΩ2. (19)

We note the metric is continuous at the boundary r = ro.

As mentioned above, the choice of box radius ro must be made so that the corrections

to the background metric remain uniformly small. In other words, we must establish the
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domain of validity implicit in regarding the effect of T µ
ν as a perturbation of the Schwarzschild

geometry. This requirement will be met provided that

|∆gµν
ĝµν

| ≡ δ < 1, (20)

where the metric perturbations, ∆gµν = gµν − ĝµν , are given by

∆gtt = −2ǫ ρ̄(r)
(

1− 2M

r

)

+ ǫ
2M

r
µ(r), (21)

and

∆grr = ǫ
2M

r
µ(r)

(

1− 2M

r

)−2

. (22)

The angular components receive no corrections. Both perturbations have identical asymp-

totic magnitudes:

lim
r→∞

|∆gµν
ĝµν

| = ǫ αj

(

2

3K

)(

r

2M

)2

, (23)

where αs =
1
2
, αf = 7

8
, and αv = 1, for the scalar, spinor and vector cases, respectively. The

domain radius, rdom, is defined to be the upper bound for which the metric perturbations

(21,22) are uniformly small:

1 ≤
(

rdom
2M

)2

=
3K

2αj

(

δ

ǫ

)

, (24)

obtained by substituting the asymptotic forms (21) and (22) into (20). Thus, one must take

δ < 1 and ro ≤ rdom to ensure the validity of the perturbative calculations.

III. Effective Potential

To explore the potential in the vicinity of the black hole, we can, without loss of generality,

consider an equatorial slice θ = π/2 of the corrected geometry (19). Then the four-velocity

of a test particle in that background is

Uµ = (ṫ, ṙ, 0, φ̇), (25)

where the overdot denotes differentiation with respect to either the proper time or an affine

parameter, depending on whether the test particle is massive or massless. The square of

this four-velocity is

gµνU
µUν = gttṫ

2 + grrṙ
2 + gφφφ̇

2 = −κ, (26)

where κ = 0 or 1, for the null and timelike cases, respectively. Because the modified space-

time geometry (19) is static and spherically symmetric, there exist two conserved quantities
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corresponding to the two Killing vectors (∂/∂t)ν ≡ (1, 0, 0, 0)ν and (∂/∂φ)ν ≡ (0, 0, 0, 1)ν of

this geometry. As for the Schwarzschild case, these constants of the motion are identified

with the particle’s total energy, E, and orbital angular momentum (with respect to the

origin), L:

E = −gµν(
∂

∂t
)µUν = −gtt ṫ, (27)

L = gµν(
∂

∂φ
)µUν = gφφ φ̇ = r2 φ̇. (28)

Combining these with (26) and using the metric components from (19) yields the test

particle’s geodesic equation,

[1 + 2ǫρ̄(r)]ṙ2 +

(

1− 2m(r)

r

)

[1 + 2ǫρ̄(r)]

(

κ+
L2

r2

)

= E2. (29)

The dependence of (29) on the boundary constant ρ(ro) is related to the calibration of

coordinate time (t) versus proper time (τ). Since coordinate time has no special meaning

unless the metric is asymptotically constant, we might have chosen the timelike Killing

vector to be ( ∂
∂t̄
) = λ( ∂

∂t
) for λ = const., instead of ( ∂

∂t
). This corresponds to the rescaling

E → Ē ≡ λE. Deriving the geodesic equation with this choice and taking λ = [1 + ǫρ(ro)]

yields (29) with E2 replaced by Ē2 and ρ̄ replaced by ρ, i.e., the integration constant ρ(ro)

has been absorbed into the total energy. Note, however, that for r → ∞, Ē does not

reduce to the special relativistic formula (= dt/dτ) for the total energy (per unit rest mass)

of a particle (as seen by a static observer) unless λ = 1. Although it is significant that

results come out without reference to a possibly non-existent flat distant region, the direct

comparison with the standard Schwarzschild case may be helpful, and we shall use E, not

Ē, in what follows. No real physical observable should depend on whether one uses E or Ē.

For circular orbits, ṙ = 0, and the total energy E of the particle is just a function of

r (velocity-independent). Thus, the effective potential for a black hole modified by O(h̄)

stress-energy is

V (w) =

(

κ+
L2

4M2
w2

)

(1− w)
[

1 + ǫ(2ρ̄(w)− w(1− w)−1 µ(w))
]

. (30)

Equation (29) is a differential equation for the radial coordinate. Once the radial motion is

determined using this effective potential, the time coordinate change (relevant only if one

refers to time at flat spatial infinity) and angular motion are easily found from (27) and
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(28). For ǫ = 0, V reduces to the effective potential of a classical Schwarzschild black hole

[11]. The function defined in (30) plays the role of an effective potential, in the sense that

the condition E2 > V determines the classically admissable range of the point particle’s

motion.

A. Null Orbits

Setting κ = 0 and substituting the appropriate functions µ and ρ from the solutions (11-

16) of the back-reaction into (30) yields the effective potential for null geodesics arising from

scalar, fermion or gauge boson back-reactions. For simplicity and purposes of illustration,

we set δ = ǫ in (24) and find the domain radii to be rdom = 380M, 286M and 268M for spin

0, 1
2
and 1. Since the shape of V is independent of the angular momentum L, we plot in Fig.

1 the functions (4M2/L2) V , using the appropriate functional forms for µ(w) and ρ(w), to

indicate the nature of the back-reaction for the different spin cases and for various choices of

ǫ (ǫ = 0., .15, .3, .45, .6). The ǫ = 0 (i.e., no back-reaction) case is displayed for reference.

The effective potentials corresponding to the single-particle back-reactions are qualitatively

indistinguishable among the scalar, spinor or vector cases, and Fig. 1 shows (4M2/L2) V for

the conformal scalar. We note for ǫ
<∼ 1/2, the effective potential is qualitatively similar to

the Schwarzschild case (i.e., no back-reaction) in that they exhibit maxima corresponding to

a single unstable circular photon orbit, and no local minima. The location of this maximum

follows from solving the equation ∂V /∂w = 0 or

w(2− 3w) + ǫ

[

2w(2− 3w)ρ̄j − 3w2µj −
32πM2

ǫ w
(T r

r )j

]

= 0, (31)

for j = s, f or v. Remarkably, the position of the unstable circular orbit is relatively

independent of variations in ǫ, and we find that r̄ = 3.0M solves (31) for all spin cases to a

very good approximation. What does depend strongly on ǫ is the overall magnitude of the

potential. This tends to decrease as ǫ increases. Eventually, as perturbation theory becomes

unreliable (for ǫ
>∼ 1/2), the potentials tend to turn over. This implies the tendency for the

potentials to develop stable circular photon orbits, a novel feature which is absent for the

Schwarzschild black hole. Since the potential is becoming negative in this instance, these

orbits will exist as bound states (E < 0).

The lowering of the potential barrier, which occurs well within the perturbative region,

profoundly affects the ability of the black hole to capture photons (and neutrinos, gravitons,
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or any massless quanta). The minimum energy E required to surmount the top of the

potential barrier is E(r̄) = V (r̄). The solutions of this equation represent the (classical)

turning points of the effective potential. The apparent impact parameter of a light ray, i.e.,

the distance of closest approach to r = 0, is b = L/E, and the black hole will capture any

light ray sent towards it whose impact parameter is less than the critical value:

bcrit ≡
L

E(r̄)
. (32)

Thus, the photon capture cross section for the equilibrium black hole is

σcapture = πb2crit ≥ 27πM2, (33)

and is larger than the Schwarzschild value of 27πM2 [12].

B. Timelike Orbits

When κ = 1 the shape of the effective potential depends on the test particle’s angular

momentum in an important way. Recall, for the case of the Schwarzschild black hole, V

will have no extrema if L < Lcrit = 2
√
3M , and a particle heading towards the center of

attraction will fall into the singularity no matter how far away it is initially. By contrast,

when L > Lcrit, the effective potential has a maximum and a local minimum, associated

with unstable and stable circular massive orbits. Furthermore, when L > 4M , the potential

will have massive bound orbits [11]. As we will see, new features show up due to the

back-reaction.

Calculations of V are summarized graphically in Figures 2-4, where we have plotted the

effective potential for various values of L and ǫ for the case of the spin-1
2
back-reaction (the

other cases are qualitatively similar in every respect and we do not include them here). The

no-back-reaction curve is included for reference. When L < Lcrit, V has no local extrema as

shown in Fig. 2, but the magnitude of V decreases for increasing ǫ, just as for the null-orbit

examples discussed above. The potential changes sign around ǫ ≈ 1/2. In Fig. 3 the effect

of higher angular momentum is displayed, by taking L = 4M > Lcrit. These curves have a

local maximum (unstable circular orbit) and a local minimum (stable circular orbit). The

role of these two critical points tends to interchange as ǫ crosses 1/2, as one begins to push

the limits of this perturbative calculation. At still higher values of L, the character of the
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maxima and minima become pronounced, as shown in Fig. 4, where L = 2
√
10M . When

the potential turns over, the minimum can lead to the existence of bound orbits.

Unlike the null case, the impact parameter for massive particles depends on the particle’s

angular momentum L. The capture cross section σcapture = πb2crit, where the critical impact

parameter is

bcrit =
Lcrit

(E2(rmax)−m2)1/2
, (34)

and m denotes the test particle rest mass (in units where c = 1). The energy E in (34) is

the amount required to just overcome the potential barrier; i.e., E(rmax) = V (rmax), where

rmax locates the maximum value of the effective potential. The value of the critical angular

momentum, defined to be that value of L below which there are no bound orbits, depends

very weakly on ǫ, so that one may take Lcrit ≈ 2
√
3M in (34). However, as we will find later,

Lcrit will depend strongly on Nv, the number of gauge bosons, in the large-Nv limit. With

the exception of the gauge boson case, the capture cross section for massive test particles

tends to increase with the strength of the back-reaction. This is due to the lowering of the

potential barrier at r = rmax.

IV. Repulsive Gravity

Additional physical insight into the consequences of the back-reaction is provided by a

study of the acceleration of a test particle in the modified spacetime geometry (19). The

acceleration gives a direct probe of the force acting on the particle.

Here, we consider a massive test particle initially at rest; this is equivalent to setting

L = 0 in the timelike (κ = 1) effective potential (30). The four-velocity of a particle at rest

is (τ denotes proper time)

Uµ = (
dt

dτ
, 0, 0, 0), (35)

and its acceleration

aµ =
dUµ

dτ
+ Γµ

αβU
αUβ. (36)

From (26) and (35), with κ = 1 we have (dt/dτ)2 = (−gtt)
−1, so the radial component of

the acceleration is

ar =

(

dt

dτ

)2

Γr
tt =

1

2
grr

∂

∂r
ln(−gtt). (37)
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Transforming to the particle’s proper rest frame gives

ar̂ =
1

2
(grr)1/2

∂

∂r
ln(−gtt), (38)

where the caret refers to components with respect to this frame; i.e., gµ̂ν̂ = diag(−1, 1, 1, 1).

Evaluation of ar̂ requires knowledge of the metric components grr and gtt to O(ǫ). These

can be read off from (19), and are (when written in terms of w)

grr = (1− w)
[

1− ǫ (1− w)−1w µ(w)
]

, (39)

and

−gtt = (1− w)
[

1 + ǫ (2ρ̄(w)− w(1− w)−1µ(w))
]

. (40)

After some algebra, using (8) and (10) to calculate ∂µ/∂w and ∂ρ/∂w, we arrive at the

following compact expression

ar̂ = (1− w)−1/2

(

w2

4M

)

[

1 + ǫ∆r̂
]

, (41)

for the radial acceleration of a particle at rest, where

∆r̂ ≡ (1− w)−1(1− w

2
)µ(w) +

32πM2

ǫ w3
T r
r , (42)

is the correction due to the back-reaction. ∆r̂ is independent of ǫ: indeed, the “ǫ-pole” in the

second term is exactly cancelled by the coefficient (4) which multiplies all the expressions

for the stress-energy tensors, (2).

It is a straightforward exercise to compute ∆r̂ for the scalar, spin-1
2
and vector boson

back-reactions by substituting the corresponding µj and T r
r,j into (42) for j = s, f and v.

We find that both

∆r̂
s > 0 and ∆r̂

f > 0, ∀r ≥ 2M, (43)

but

∆r̂
v < 0, (44)

for 2.8M
<∼ r

<∼ 8.6M . In other words, while the conformal scalar and massless spinor

back-reactions appear to make the “dressed” black hole more attractive (we have seen this

effect from the effective potential point-of-view, in the lowering of the magnitude of the

effective potential for timelike orbits; see Figures 2-4), the gauge boson back-reaction tends
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to weaken the the attractive force of the black hole by generating a localized spherical region

or “shell” containing a repulsive component of the net force. Since we have set L = 0 from

the outset, this cannot be an artifact of the particle’s orbital motion (it is stationary),

but must be ascribed to a genuine repulsive gravitational force, or anti-gravity, completely

quantum mechanical in origin and induced by the U(1) back-reaction.

V. Multiple Field Back-reaction

Thus far we have investigated the separate back-reactions due to single species of confor-

mal scalars, massless spinors and U(1) gauge fields. While this has revealed novel important

features of the back-reaction problem, a more realistic setting should take into account black

holes in thermal equilibrium with a heat bath comprising multiple species of quantum fields.

We know from elementary particle physics that the replication or multiplicity of scalars,

fermions and gauge fields reflects the variety of quantum numbers needed to distinguish

physical attributes (flavor, color, mass, etc.) observed directly or inferred from observa-

tion. Particle replication is also the starting point for constructing unified models of the

fundamental interactions based on large (i.e., rank 4 or greater) gauge groups [13].

Apart from the details of their specific phenomenologies, what primarily distinguishes

say, the standard model (SM) from one or more of the grand unified theories (in which the

SM must be embedded) is the particle content and group-theoretic assignment of each model.

This is determined once the choice of gauge group is made and the scalars (Higgs bosons) and

fermions (quarks and leptons) have been assigned to various multiplets or representations

of the group. These group theory assignments can be characterized with a set of integers.

The number Nv of gauge bosons belonging to a given gauge group given by the number

of group generators [8,14]. Typically, the number of fermions (Nf) is the dimension of the

representation times the number of families, and the number of scalars (Ns) is determined

by the pattern of symmetry breaking to smaller groups one wishes to explore. We shall give

examples of the Nj below for the standard model as well as for some generic extensions of

this model.

In the limit of free field theories on a background spacetime, the back-reaction due to a

collection of fields is easy to treat. This follows since the stress-energy tensors in this limit

only depend quadratically on the fields and are “flavor-diagonal”. To make this point clear,
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we note the stress-energy tensor for a set of Ns real massless conformally coupled scalars is

T µ
ν =

Ns
∑

k=1

(T µ
ν )

k, (45)

where (no sum on k)

(Tµν)
k =

2

3
Φk

,µΦ
k
,ν −

1

6
gµνg

σρΦk
,σΦ

k
,ρ −

1

3
ΦkΦk

,µν −
1

12
gµνΦ

k
✷Φk, (46)

is the tensor for a single scalar. Then, upon renormalization,

< T µ
ν >ren=

Ns
∑

k=1

< (T µ
ν )

k >ren= Ns < T µ
ν >ren, (47)

where the last equality follows from the fact that the renormalization procedure is indepen-

dent of the species label k. Similar considerations hold for the renormalization of the spin-1
2

and gauge boson tensors in the multiple particle case [14].

The upshot of this is that we should obtain a good approximation to the multiple

field (and multiple spin) back-reaction in the limit of small gauge, Yukawa and scalar self-

couplings by simply replacing the source term in (1) by an appropriate weighted combination

(with weights Ns, Nf and Nv) of the single-species stress-energy tensors. From (1) and (8)

and (10), this entails the rescaling

µ(r)j → Nj µ(r)j, and ρ(r)j → Nj ρ(r)j, (48)

for j = s, f, v. To get a feeling for the values of the “weights” one can expect, we give

a brief listing of the numbers of gauge fields, spinors and real scalars contained in typical

gauge theories in Table I. The standard model of elementary particles contains a total of

12 gauge bosons (8 gluons, the W+,W−, Zo and the photon), requires at least one complex

scalar doublet (4 real scalars) for spontaneous symmetry breaking, and has 3 families of 15

quarks and leptons (45 spinors) [15]. The Bose-Fermi symmetry of supersymmetry doubles

the particle spectrum of the non-supersymmetric models. For the minimal supersymmetric

standard model (MSSM), there are the 12 gauge bosons, the the spin-1
2
sector is augmented

over that of the SM by the addition of 12 gauginos (fermionic partners of the gauge bosons)

and from the fermionic partners of the two complex scalar doublets (8 real scalars) needed

to break the gauge symmetry and provide fermion masses in this model [13]. This yields a
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total Nf = 65. The 45 original fermions of the SM have 45 spin-0 partners which add to the

two complex doublets to give a total Ns = 53. The smallest simple group containing the SM

is SU(5). This has 24 gauge fields, 45 quarks and leptons (3 families of 15), and scalars in

the adjoint 24 and a fundamental 5 complex representation, or 34 real scalars in total [13].

Finally, Table I includes an E6 model which contains 78 gauge particles, three families of

27 fermions and an adjoint 78 (real) and two 27’s of (complex) scalars.

An important consequence of the multiple-field back-reaction is that the validity of the

perturbation theory breaks down at a smaller radius, for a given ǫ > 0, than for the N = 1

cases. This can be appreciated immediately by inspection of (21) and (22), which show

that the metric perturbations grow in direct proportion to the Nj. This growth shrinks the

domain-of-validity radius according to

1 ≤
(

rdom
2M

)2

=
3K

2αj Nj

(

δ

ǫ

)

. (49)

Nevertheless, because K is such a large constant, we can still find perturbatively valid

solutions of (1) involving large numbers (Nj >> 1) of quantum fields. We illustrate this

for the case of the gauge boson back-reaction. In Fig. 5, we present a calculation of the

null potential for Nv = 100 and ǫ = 0., .15, .3, .45 and .6. From (49), and taking δ = ǫ

for convenience, we find rdom = 27M , which sets the scale for the perturbation. Unlike

any of the Nj = 1 cases discussed above, the increased number of gauge fields prevent the

barrier from turning over with the rest of the potential as ǫ is increased. An even more

dramatic example is provided by taking Nv = 300 (rdom = 15M), as shown in Fig. 6.

Here, as the back-reaction is increased, the barrier peak increases while the rest of the

potential flattens out. This phenomenon shows up only for the gauge field case, and is due

to the amplification of the repulsive anti-gravity region which exists only for this case. Note

the no-back-reaction curve (ǫ = 0) has the lowest barrier of the set. (We point out that

the string-inspired unification group E8 ⊗ E8 contains 496 gauge bosons, so a number like

Nv = 300 is not unrealistic).

Similar amplification takes place for the timelike effective potential, as shown in Fig. 7.

Again, for illustrative purposes, we take Nv = 300, the same range of ǫ as before, but we

set L = 0. Without the back-reaction, the test particle would be doomed to be captured by

the black hole, as is well known. However, in the present case, we see the amplification of
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the repulsive core may prevent the test particle from being captured–even for a vanishing

impact parameter!

VI Discussion

The lowest order solutions of the back-reaction problem solved in this paper contain

rather striking features which we have been able to uncover through calculations of the

black hole effective potential. We have found the back-reaction tends to diminish the overall

magnitude of the potentials corresponding to null and timelike orbits. This lowering of the

effective potential is correlated with an associated increase in the black hole capture cross

sections for those instances when the potential exhibits a barrier peak. This in turn will

affect the black hole lifetime which results from the competition between particle capture

and evaporation if the hole is formed in thermal equilibrium and subsequently goes out

of equilibrium with the surrounding particle heat bath [12]. For “extreme” values of the

perturbation parameter (ǫ
>∼ 1/2) the potentials turn over completely, become negative

near the renormalized event horizon, and exhibit minima corresponding to bound orbits.

Although an ǫ approaching such values is surely pushing the limits of perturbation theory,

perhaps beyond the bounds of even qualitative reliability, nevertheless, one may interpret

these results as indicating possible qualitative trends which should be investigated in more

nearly complete treatments.

The shapes and magnitudes of the effective potentials are similar for the single-species

back-reactions from the spin-0, 1
2
and 1 fields, but the U(1) case merits special attention.

The gauge boson back-reaction generates a repulsive force in the neighborhood of the event

horizon, which is revealed by calculating the radial acceleration of a massive test particle

placed initially at rest outside the black hole. The component of the net force due to the

back-reaction points away from the origin, unlike the scalar and fermion cases, where it

points inward. The appearance of such Casimir-type forces, which are quantum-mechanical

in origin, should be expected on general grounds. Indeed, as emphasized in [16], a meaningful

definition of the physical vacuum energy must take into account the fact that quantum fields

always exist in the presence of external constraints, i.e., either in interaction with matter or

other external fields or boundaries. For the cases at hand, the renormalization of the stress-

energy tensors employed here must take into account that the quantum fields (the scalar,
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spinor and gauge boson) interact with the classical background Schwarzschild spacetime.

This external “constraint” affects the zero-point modes of the quantum fields which in turn

affects the zero-point energies.

The treatment of multiple-species back-reaction is useful for problems involving black

holes in thermal equilibrium with heat baths made up from fields belonging to representa-

tions of gauge theories. Again, the gauge-boson example is particularly noteworthy since an

increase in the number of gauge fields can substantially amplify the repulsive gravitational

Casimir force to such an extent that the black hole capture cross section actually decreases

relative to the no-back-reaction limit. Since all spins discussed in this paper come into play

for the back-reaction due to a gauge theory with matter, it may prove worthwhile to study

the cosmology of models that lead to a net increase or decrease in the capture cross section

[12].

Provided the semiclassical back-reaction program leads qualitatively in the right direc-

tion (that is, towards a correct quantum gravity), one should include the spin-2 graviton

contribution to the renormalized one-loop effective stress-energy tensor. The effects of linear

gravitons should contribute a term to the stress-energy tensor of the same order as those

coming from ordinary matter and radiation fields.

Finally, not all scalars will be conformally coupled to the curvature nor will they nec-

essarily be massless. For example, the Higgs scalars could couple with any strength to the

curvature, and the axion, if it exists, couples minimally. Partial results from a calculation

of the renormalized stress-energy tensor of a scalar with arbitrary coupling and mass has

recently been published and could serve as a starting point for a more general investigation

of the scalar field back-reaction [17].
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TABLES

Model Gauge Group Nv Nf Ns

Standard Model (SM) SU(3) ⊗ SU(2)⊗ U(1) 12 45 4

Minimal SUSY SM SU(3) ⊗ SU(2)⊗ U(1) 12 65 53

Minimal SU(5) SU(5) 24 45 34

Three Family E6 E6 78 81 186

TABLE I. Particle multiplicities of various gauge theories

FIGURE CAPTIONS

Fig. 1: Effective potential for null orbits: conformal scalar field back-reaction. ǫ =

0.0, .15, .3, .45, .6.

Fig. 2: Effective potential, timelike orbits for L = 0: fermion back-reaction.

Fig. 3: Effective potential, timelike orbits for L = 4M : fermion back-reaction.

Fig. 4: Effective potential, timelike orbits for L = 2
√
10M : fermion back-reaction.

Fig. 5: Effective potential, null orbits: gauge field back-reaction with Nv = 100.

Fig. 6: Effective potential, null orbits: gauge field back-reaction with Nv = 300.

Fig 7: Effective potential, timelike orbits for L = 0: gauge field back-reaction with Nv = 300.
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