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ABSTRACT

Quantum stress-energy tensors of fields renormalized on a Schwarzschild background

violate the classical energy conditions near the black hole. Nevertheless, the asso-

ciated equilibrium thermodynamical entropy ∆S by which such fields augment the

usual black hole entropy is found to be positive. More precisely, the derivative of ∆S

with respect to radius, at fixed black hole mass, is found to vanish at the horizon for

all regular renormalized stress-energy quantum tensors. For the cases of conformal

scalar fields and U(1) gauge fields, the corresponding second derivative is positive,

indicating that ∆S has a local minimum there. Explicit calculation shows that in-

deed ∆S increases monotonically for increasing radius and is positive. (The same

conclusions hold for a massless spin 1/2 field, but the accuracy of the stress-energy

tensor we employ has not been confirmed, in contrast to the scalar and vector cases).

None of these results would hold if the back-reaction of the radiation on the space-

time geometry were ignored; consequently, one must regard ∆S as arising from both

the radiation fields and their effects on the gravitational field. The back-reaction, no

matter how “small”, is therefore always significant in describing thermal properties

of the spacetime geometries and fields near black holes.
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I Introduction

A black hole can exist in thermodynamical equilibrium provided that it is surrounded

by radiation with a suitable distribution of stress-energy. In the semi-classical approach,

such radiation is characterized by the expectation value of a stress-energy tensor obtained

by renormalization of a quantum field on the classical spacetime geometry of a black hole.

One can use such a stress-energy tensor as a source in the semi-classical Einstein equation,

Gµ
ν = 8π < T µ

ν >renormalized, (1)

to calculate the change effected by the stress-energy tensor in the black hole’s spacetime

metric. This is the “back-reaction” problem associated with the spacetime geometry of a

black hole in equilibrium.

In this paper we use solutions of back-reaction problems of the above type to compute

the thermodynamical entropy ∆S by which quantum fields augment the usual Bekenstein-

Hawking black hole entropy SBH = (1/4)AHh̄
−1, where AH is the area of the event horizon

(Units are chosen such that G = c = kB = 1, but h̄ 6= 1.). We consider explicitly the case of

a Schwarzschild black hole surrounded by either a massless conformal scalar field or a U(1)

gauge field (Maxwell field). (A massless spin 1/2 field is treated in the Appendix, but the

accuracy of its stress-energy tensor has not to our knowledge been checked, in contrast to

the conformal scalar and vector fields.) We show in all these cases that ∆S is positive.

Our investigation shows rigorously that for all possible regular stress-energy tensors, the

radial derivative of ∆S vanishes at the horizon, for fixed black-hole mass; that is, ∆S has

there a local extremum with respect to radius. The form of the second derivative gives the

criterion for a local minimum, which indeed occurs in all cases we have considered. Then by

explicit calculation we show that ∆S is positive and monotonically increasing for increasing

radius. Therefore the local minimum of ∆S at the horizon is the only one and is its global

minimum. As a consequence, the entropy is amenable to statistical interpretation. None

of these features holds if the back-reaction of the fields on the spacetime metric is ignored.

In this sense, ∆S must be regarded as arising from both the quantized radiation fields and

from their effects on the gravitational field.

We shall see, from the properties of the renormalized stress-energy tensors we employ and

of the semi-classical Einstein equation, that we can obtain accurate fractional corrections
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to the metric only in O(ǫ), where ǫ = h̄M−2, MP l = h̄1/2 is the Planck mass and M is the

mass of the black hole. Because the usual black hole entropy SBH = (4πM2)h̄−1 = O(ǫ−1),

corrections to SBH can be obtained in O(ǫ0) = O(1) from fractional corrections of O(ǫ) in

the metric. It turns out that these corrections are of the same order as the naive flat space

radiation entropy (4/3)a T 3

HV , where a = (π2/15h̄3), TH = h̄(8πM)−1 is the uncorrected

Hawking temperature of a Schwarzschild black hole, and V is the flat space volume. From

this fact alone it follows that the back-reaction cannot be ignored.

II Stress-Energy Tensors

Stress-energy tensors renormalized on a Schwarzschild background have been obtained

in exact form for conformal scalar fields and for U(1) gauge fields, respectively, by Howard

[1] and by Jensen and Ottewill [2]. Both results can be written in the form

< T µ
ν >renormalized=< T µ

ν >analytic +

(

h̄

π2(4M)4

)

∆µ
ν , (2)

where the analytic piece, in the case of a conformal scalar field, was given by Page [3]. The

term ∆µ
ν is obtained from a numerical evaluation of a mode sum. The numerical piece is

small compared to the analytic piece, and we do not include it in the calculations in this

paper. This does not change any of our results qualitatively because both pieces separately

obey the required regularity and consistency conditions. The analytic piece has the exact

trace anomaly in both cases.

The stress-energy tensors satisfy ∇̂µ < T µ
ν >= 0 on the Schwarzschild background with

metric

ĝµν = diag
[

−(1 −
2M

r
), (1−

2M

r
)−1, r2, r2 sin2 θ

]

. (3)

These tensors represent the stress-energy distribution required to equilibrate the black hole

with its own Hawking radiation. Each satisfies < T t
t >=< T r

r > at the horizon r = 2M ,

which is required for regularity of the spacetime geometry [3]. Each has the asymptotic form

of a flat spacetime radiation stress-energy tensor at the uncorrected Hawking temperature

at infinity of an ordinary Schwarzschild black hole, denoted here by TH = h̄(8πM)−1.

Dropping the angular brackets and displaying the analytic piece, one has for the confor-
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mal scalar field [3]

T t
t = −

1

3
aT 4

H(
1

2
)
(

3 + 6w + 9w2 + 12w3 + 15w4 + 18w5 − 99w6
)

, (4)

T r
r =

1

3
aT 4

H(
1

2
)
(

1 + 2w + 3w2 + 4w3 + 5w4 + 6w5 + 15w6
)

, (5)

T θ
θ = T φ

φ =
1

3
aT 4

H(
1

2
)
(

1 + 2w + 3w2 + 4w3 + 5w4 + 6w5 − 9w6
)

, (6)

where w ≡ 2M/r. We have displayed the factor (1/2) explicitly because the scalar field has

one helicity state while the vector field below has two. It is convenient in what follows to

write
1

3
aT 4

H =
ǫ

48πKM2
, (7)

where K = 3840π. For the U(1) vector field, we have [2]

T t
t = −

1

3
aT 4

H

(

3 + 6w + 9w2 + 12w3 − 315w4 + 78w5 − 249w6
)

, (8)

T r
r =

1

3
aT 4

H

(

1 + 2w + 3w2 − 76w3 + 295w4 − 54w5 + 285w6
)

, (9)

T θ
θ = T φ

φ =
1

3
aT 4

H

(

1 + 2w + 3w2 + 44w3 − 305w4 + 66w5 − 579w6
)

. (10)

In both cases T r
r > 0 and the energy density −T t

t is negative in the vicinity of the event

horizon, thus violating the weak energy condition. For the scalar field, the energy density

is negative from r = 2M to r ≈ 2.34M and for the vector field from r = 2M to r ≈ 5.14M .

Both tensors also violate the dominant energy condition in a region surrounding and bor-

dering on the horizon.

III Back-reaction on the Metric

We obtain fractional corrections hα
ν to the metric by setting

gµν = ĝαµ[δ
α
ν + ǫ hα

ν ] (11)

in the semi-classical Einstein equation (1). We work in linear order in ǫ as required by

∇̂µT
µ
ν = 0 and ∇̂µ(δG

µ
ν) = 0, where δGµ

ν is the Einstein operator linearized on a background

satisfying Ĝµ
ν = 0. The corrected geometry will be taken to be static and spherically sym-

metric. Working out the equations as in [4], we find the corrected metric can be written

as

ds2 = −

(

1−
2m(r)

r

)

(1 + 2ǫρ̄(r)) dt2 +

(

1−
2m(r)

r

)

−1

dr2 + r2dω2, (12)

5



where dω2 is the standard metric of a normal round unit sphere. To obtain m(r) and ρ̄(r)

requires only simple radial integrals involving T t
t and T r

r . The angular components enter

linearized Einstein equations that hold automatically by virtue of ∇̂µT
µ
ν = 0 in a static

spherical geometry.

The mass function m(r) has the form

m(r) = M(1 + ǫ µ(r) + ǫ CK−1), (13)

with

µ(r) =
1

ǫM

∫ r

2M
(−T t

t ) 4πr̃
2 dr̃, (14)

so µ(r) vanishes at the horizon. In (13), C is an undetermined integration constant that

inspection of (12) shows is to be absorbed into M to obtain a renormalized mass for the

black hole. Thus, setting grr = 0 shows that r = 2m = 2M(1 + ǫ CK−1) = 2Mrenormalized

locates the event horizon. Note that, to the order we are working, we can write m(r) =

M(1 + ǫ CK−1)(1 + ǫ µ(r)) ≡ Mren(1 + ǫ µ(r)). The renormalized mass will not be distin-

guished notationally from the original Schwarzschild mass M in what follows, as the bare

Schwarzschild mass has no physical meaning in the back-reaction problem. Therefore, we

write

m(r) = M(1 + ǫ µ(r)) ≡ M +Mrad(r) (15)

where, using (14), we see that Mrad = ǫM µ is the usual expression for the effective mass of

a spherical source.

For the scalar field, denoted where necessary by a subscript “s”, one finds [4]

K µs =
1

2
(
2

3
w−3 + 2w−2 + 6w−1 − 8 ln(w)− 10w − 6w2 + 22w3 −

44

3
). (16)

For the vector field, denoted by a subscript “v”, one finds [5]

K µv =
2

3
w−3 + 2w−2 + 6w−1 − 8 ln(w) + 210w − 26w2 +

166

3
w3 − 248. (17)

In both (16) and (17), we note that the first term on the right, multiplied by ǫMK−1, gives

the naive flat-space value a T 4

HV for radiation energy.

The metric is completed by a determination of ρ̄ which, like µ, can be found from an

elementary integration. Defining

K ρ̄ ≡ K ρ+ k, (18)
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where k is a constant of integration, we have

ρ =
1

ǫ

∫ r

2M
(T r

r − T t
t )(r̃ − 2M)−14πr̃2 dr̃. (19)

For the scalar field, one finds [4] (Kρ̄s = Kρs + ks)

Kρs =
1

2

(

2

3
w−2 + 4w−1 − 8 ln(w)−

40

3
w − 10w2 −

28

3
w3 +

84

3

)

. (20)

Note that at the horizon r = 2M , or w = 1, we have ρs(1) = 0. The constant k for the

scalar (vector) is denoted ks (kv) and will be determined below by a boundary condition.

Similarly, for the vector field we have K ρ̄v = K ρv + kv, where [5]

K ρv =
2

3
w−2 + 4w−1 − 8 ln(w) +

40

3
w + 10w2 + 4w3 − 32, (21)

and ρv(1) = 0 at w = 1.

Because both radiation stress-energy tensors are asymptotically constant, it is clear that

the system composed of black hole plus equilibrium radiation must be put in a finite “box”.

Otherwise, the fractional corrections ǫ hα
ν to the metric would not remain small for sufficiently

large radius. Physically, this means that the radiation in a box that is too large would

collapse onto the black hole, producing a larger one. Hence, we must choose the radius ro

of the box such that it is less than the second positive root r∗ for r in grr = 0 (the first

zero corresponds to the horizon r = 2M). We shall also assume that the box radius ro

is sufficiently large that the stress-energy tensors we employ, which were constructed for

infinite asymptotically flat spacetime, are a good approximation. Clearly, a finite radius

would cut out some of the radial modes that were used in these calculations. However, if ro

is somewhat greater than the longest wavelength characteristic of Hawking radiation, which

in turn is associated with the least-damped quasi-normal mode of lowest angular momentum

for the field in question, then this effect should be negligible. This wavelength λ∗ is about

42M for the conformal scalar field and is smaller for the higher-spin massless fields. Also, if

ro > λ∗, the explicit nature of the walls of the box (e.g., adiabatic versus diathermic) should

not be important. For these reasons we shall assume throughout the remainder of this work

that λ∗ < ro < r∗. (Of course, one must also assume that M
>
∼ MP l, in any treatment

based on (1).) If the radius ro were to approach the horizon, then explicit size and boundary
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effects would have to be taken into account in the construction of < T µ
ν >, as shown in the

work of Elster [6,7].

One convenient way to fix the constants ks and kv is to impose a microcanonical boundary

condition [4]. We fix ro and imagine placing there an ideal massless perfectly reflecting wall.

Outside ro, we then have an ordinary Schwarzschild spacetime

ds2 = −

(

1−
2m(ro)

r

)

dt2 +

(

1−
2m(ro)

r

)

−1

dr2 + r2dω2, (22)

for r ≥ ro. Continuity of the three-metric induced by metrics (12) and (22) on the world

tube r = ro fixes the constant k, i.e., ks or kv, in ρ̄ by the relation

k = −K ρ(ro). (23)

There are finite discontinuities in the extrinsic curvature of the world tube r = ro [4],

but these, and other properties of the box wall, are of no interest in the present analysis,

as we argued above. The spacetime geometry, including back-reaction, is now completely

determined by (22) for r ≥ ro, and for r ≤ ro by

ds2 = −

(

1−
2m(r)

r

)

[1 + 2ǫ (ρ(r)− ρ(ro))]dt
2 +

(

1−
2m(r)

r

)

−1

dr2 + r2 dω2. (24)
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IV Temperature

If we release a small packet of energy from a closed box containing a black hole through

a long thin radial tube, it will undergo a red-shift and approach the asymptotic temperature

T∞ =
κH h̄

2π
, (25)

where κH is the surface gravity of the event horizon. For an ordinary Schwarzschild black

hole (ignoring the radiation), one finds κH = (4M)−1 and T∞ = TH = h̄(8πM)−1. However,

the stress-energy of the radiation changes the surface gravity of the horizon to

κH =
1

4M

[

1 + ǫ(ρ̄− µ) + 8πr2 T t
t

]

|r=2M , (26)

as a straightforward calculation shows [4]. With the microcanonical boundary conditions,

we can use (23) to obtain from (25) and (26)

T∞ =
h̄

8πM

[

1− ǫ ρ(ro) + ǫ nK−1
]

, (27)

where n takes the value ns = 12 for the scalar field and nv = 304 for the vector field. The

local temperature at the boundary of the box is obtained by blue-shifting (27) from infinity

back to ro. We find from

Tloc = T∞[−gtt(ro)]
−1/2, (28)

that

Tloc(ro) =
h̄

8πM

[

1− ǫ ρ(ro) + ǫ nK−1
]

[

1−
2m(ro)

ro

]

−1/2

. (29)

The temperature Tloc, unlike T∞, is actually independent of the boundary condition that

determines the constant k, as explained in detail in [4]. Indeed, it can be readily verified

by the reader that k cancels out in O(ǫ) in the expression (28) for Tloc. Either measure of

temperature, T∞ or Tloc, can be used to calculate the same entropy in conjunction with an

appropriate measure of energy. This is quite important: it means that the specific boundary

condition chosen does not affect the calculated entropy, as we shall see below.

V Thermodynamical Entropy

One way to calculate the entropy is as follows. Fix the radius ro of a closed box. The

measure of energy in the box conjugate to the asymptotic inverse temperature β∞ ≡ T−1

∞
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is then the Arnowitt-Deser-Misner (ADM) mass m(ro) determined at spatial infinity. The

first law of thermodynamics for slightly differing equilibrium configurations tells us that

dS = β∞ dm (dro = 0), (30)

where S(ro) is the total entropy in the box. By this method we seem to obtain only the

total entropy S(ro) rather than the distribution of entropy in the given box, S(r), for r ≤ ro,

where S(r) denotes the total entropy inside the radius r. However, the latter can be obtained

by using the quasi-local energy E [8-11], which for static spherical metrics like those treated

here is given for any radius r ≤ ro by

E(r) = r − r[grr(r)]1/2, (31)

with grr(r) determined by (24), the metric for r ≤ ro. This energy, unlikem, does not depend

on asymptotic flatness in its definition, nor even on the existence of an asymptotically flat

region [10,11]. Furthermore, even the “normalization” of the zero of energy [10,11] that is

incorporated in E as given in (31) does not affect the calculated entropy, as it certainly

should not. (This “normalization” is intended to make E approach the ADM mass in an

asymptotically flat region, if such a region exists.) Similarly, the inverse local temperature

β(r) ≡ T−1

loc (r), r ≤ ro, is independent of the boundary conditions as mentioned above.

Hence, the value of the entropy depends neither on the zero of energy nor on the existence

of an asymptotic region.

Therefore, to obtain S(r), in place of (30) we can write

dS = β dE (dr = 0, r ≤ ro). (32)

Choosing M and r as independent variables, and fixing r, we can readily integrate (32) to

obtain S up to a function of r and a constant. From (29) we have

β(r) =
8πM

h̄

[

1 + ǫ ρ(r)− ǫ nK−1
]

[

1−
2m(r)

r

]1/2

, (33)

and from (15), (24), and (31), holding r fixed,

dE =

[

1− ǫ µ+ ǫM
∂µ

∂M

]

−1/2 [

1−
2m(r)

r

]

−1/2

dM. (34)
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One can see directly for any r ≤ ro that β∞dm = β dE where, of course, one replaces ro

by r in the formulas for β∞ and m to establish this result. This equality means that we

can calculate S(r) for any r ≤ ro. The key point of this discussion is that one can think of

adding layer upon layer of entropy, associated with the black hole and a given < T µ
ν > that

is valid from r = 2M to r = ro, beginning at r = 2M and ending at r = ro. (Additivity of

entropy in configurations analogous to this case is established in [12], but our method here

establishes it independently.)

Observe that from fractional changes of O(ǫ) in the metric, which affect the surface

gravity and temperature in this order, we are able to calculate from (32) departures of

O(ǫ0) = O(1) from the usual black hole entropy SBH = (4πM2)h̄−1 = 4πǫ−1. But in fact all

of the corrections to the entropy are of the same order as the naive flat-space entropy itself:

4

3
a T 3

HV =
4

3
(
π2

15h̄3
)(

h̄

8πM
)3(

4

3
πr3) =

8π

K
(
8

9
w−3) = O(1)× w−3. (35)

The h̄’s in (35) cancel out, leaving only a function of w = 2Mr−1.

Combining (33) and (34) yields

dS =
8πM

h̄
dM + 8π

[

w−1(ρ− µ) +
∂µ

∂w
− nK−1w−1

]

dw, (36)

with dr = 0. Integration of (36) gives an expression of the form

S =
4πM2

h̄
+∆S(w) + f(

r

h̄1/2
), (1 ≤ w ≤ wo = 2M/ro) (37)

where the first term is the usual Bekenstein-Hawking expression SBH for the black hole

entropy, the second term is a function of w determined up to an additive integration constant

by the second term on the right of (36), and f is a dimensionless function of r that does not

depend on M . The appearance of a function f in (37) can be understood as follows. Since

our problem involves three mass or length scales MP lanck = h̄1/2, the mass of the black hole,

M , and a radius r ≤ ro, there are, for a given r, exactly three dimensionless parameters

one can define, namely, ǫ = h̄M−2, w = 2M/r and r/h̄1/2. However, the first two terms on

the right of (37) depend only on ǫ and w, respectively. Thus, if the entropy S depends on

r/h̄1/2, it can only do so through a separate function of this parameter.

Let us first dispose of the dimensionless function f , which clearly can depend only on

(r/h̄1/2), where h̄1/2 is the Planck length in our units. It seems that such a term could only
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arise in a theory taking quantum gravity into explicit account because the semi-classical

theory has incorporated the dimensionless terms involving h̄/M2 and 2M/r. (Of course,

quantum gravity could modify terms of these latter two types quantitatively.) On dimen-

sional grounds, therefore, we take f = 0 in the semi-classical theory. (A formal argument

that f = 0 based on [9] can be constructed [13].) The possibility of an additive constant

will be discussed when we treat ∆S below.

In considering ∆S, which will be given explicitly below, we first note the significant

property that
∂(∆S)

∂w
= 8π

[

w−1(ρ− µ) +
∂µ

∂w
− nK−1w−1

]

(38)

vanishes at the horizon w = 1. Therefore, for a fixed black hole mass M , the derivative with

respect to r of ∆S vanishes at the horizon. Thus ∆S has a local extremum with respect

to r at the horizon. This result follows from several general features that will be enjoyed

by all regular renormalized stress-energy tensors on the Schwarzschild background and the

back-reactions they induce, not just the cases analyzed here. First, µ vanishes at the horizon

by virtue of the black hole’s mass having been suitably renormalized. Second, ρ vanishes at

the horizon, as follows from (19) and the regularity condition T t
t = T r

r at the horizon [3].

More precisely, we have that

limw→1+

(

T t
t − T r

r

1− w

)

exists. (39)

Third, the last two terms on the right of (38) add to zero at the horizon because there

the Hamiltonian constraint (Gt
t − 8πT t

t = 0) holds. Furthermore, note that if the fractional

effects of O(ǫ) in the temperature induced by the back-reaction were neglected, the derivative

(38) would not vanish at the horizon, a property that the reader can verify.

Is the local extremum of ∆S at the horizon a local minimum? To answer this we calculate

∂2(∆S)

∂w2
= 8π

[

−w−2(ρ− µ) + w−1(
∂ρ

∂w
−

∂µ

∂w
) +

∂2µ

∂w2
+ nK−1w−2

]

, (40)

which becomes, at the horizon w = 1,

∂2(∆S)

∂w2
|w=1 = 8π

(

∂ρ

∂w
+

∂2µ

∂w2

)

|w=1 (41)

or , equivalently, with M fixed,

∂2(∆S)

∂r2
|r=2M =

32π2M2

h̄

[

4M
∂(−T t

t )

∂r
− 8T r

r − (
T r
r − T t

t

1− 2M/r
)

]

|r=2M . (42)
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Hence we need only examine the stress-tensors. In all the cases we consider (conformal scalar,

vector, massless fermion), (41) and (42) are positive so that ∆S takes a local minimum with

respect to radius at the horizon. This suggests, but does not prove, that ∆S is non-negative.

The local minimum of ∆S at the horizon and the fact that SBH in the expression (37)

for the total entropy S contains the renormalized mass M of the hole motivate the choice of

the remaining additive constant in ∆S, which can only be a pure number, to be such that

∆S = 0 at w = 1. For w = 1, with no “room” for the fields to contribute anything further,

one then obtains only the Bekenstein-Hawking entropy (1/4)AHh̄
−1, as would be expected.

With the choice ∆S(w = 1) = 0, we obtain for the conformal scalar field [14,15]

∆Ss =
8π

K
(
1

2
)
(

8

9
w−3 +

8

3
w−2 + 8w−1 +

32

3
ln(w)−

40

3
w − 8w2 +

104

9
w3 −

16

9

)

(43)

for 1 ≥ w ≥ wo. Similarly, for the electromagnetic or U(1) gauge field we find

∆Sv =
8π

K

(

8

9
w−3 +

8

3
w−2 + 8w−1 − 96 ln(w) +

40

3
w − 8w2 +

344

9
w3 −

496

9

)

. (44)

In both expressions, the naive flat-space radiation entropy term (35) appears as the first

term on the right. Both ∆Ss and ∆Sv are positive for 1 ≥ w ≥ wo > w∗ = 2Mr−1

∗
and

vanish at w = 1. Hence, in that they are positive, both are amenable to arguments relating

thermodynamical and statistical entropy. It has not heretofore been evident that this desir-

able feature would be present in the semi-classical theory. The reader can verify, by omitting

the back-reaction terms in the inverse temperature (33), that not only is the vanishing slope

of ∆S at w = 1 lost, but also that the value of the resulting “∆S”, normalized as above, is

no longer positive for the range 1 ≥ w ≥ wo. In this fundamental sense, we conclude that

the back-reaction, however small quantitatively in its effects on the metric near a black hole,

can never be regarded as negligible.
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Appendix

Here we outline the calculation of ∆S for a massless spin 1/2 field. We use the stress-

energy tensor given in [16]. As far as we have been able to determine, its accuracy has not

been verified by an exact numerical analysis, unlike the two cases we treated in the body of

the text. This tensor has also been used in a calculation similar to the one presented here

in [17], where qualitatively different results were obtained for the entropy ∆S.

The stress-energy tensor is given by

T t
t = −

1

3
aT 4

H (
7

8
)
(

3 + 6w + 9w2 + 12w3 +
135

7
w4 +

186

7
w5 − 69w6

)

, (A1)

T r
r =

1

3
aT 4

H (
7

8
)
(

1 + 2w + 3w2 −
52

7
w3 − 5w4 −

18

7
w5 +

15

7
w6

)

, (A2)

T θ
θ = T φ

φ =
1

3
aT 4

H (
7

8
)
(

1 + 2w + 3w2 −
45

7
w3 −

45

7
w4 +

62

7
w5 + 23w6

)

. (A3)

We find for µ and ρ

Kµf =
7

8

(

2

3
w−3 + 2w−2 + 6w−1 − 8 ln(w)−

90

7
w −

62

7
w2 +

46

3
w3 −

16

7

)

, (A4)

Kρf =
7

8

(

2

3
w−2 + 4w−1 − 8 ln(w)−

200

21
w −

50

7
w2 +

52

7
w3 +

32

7

)

, (A5)

where the subscript “f” denotes “fermion”. The formulas for temperature and inverse

temperature have the same form as before with nf = −4. The quantity ∆S enjoys all the

same basic properties as for the conformal scalar and vector fields. It is given by

∆Sf =
8π

K
(
7

8
)
(

8

9
w−3 +

8

3
w−2 + 8w−1 +

24

7
ln(w)−

200

21
w −

56

7
w2 +

800

63
w3 −

424

63

)

,

(A6)

and is positive.
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