61 research outputs found

    Evaluation of the capture efficiency and size selectivity of four pot types in the prospective fishery for North Pacific giant octopus (Enteroctopus dofleini)

    Get PDF
    Over 230 metric tons of octopus is harvested as bycatch annually in Alaskan trawl, long-line, and pot fisheries. An expanding market has fostered interest in the development of a directed fishery for North Pacific giant octopus (Enteroctopus dofleini). To investigate the potential for fishery development we examined the efficacy of four different pot types for capture of this species. During two surveys in Kachemak Bay, Alaska, strings of 16 –20 sablefish, Korean hair crab, shrimp, and Kodiak wooden lair pots were set at depths ranging between 62 and 390 meters. Catch per-unit-of-ef for t estimates were highest for sablefish and lair pots. Sablefish pots caught significantly heavier North Pacific giant octopuses but also produced the highest bycatch of commercially important species, such as halibut (Hippoglossus stenolepis), Pacific cod (Gadus macrocephalus), and Tanner crab (Chionoecetes bairdi)

    Environmental DNA for the enumeration and management of Pacific salmon

    Get PDF
    Pacific salmon are a keystone resource in Alaska, generating annual revenues of well over ~US$500 million/yr. Due to their anadromous life history, adult spawners distribute amongst thousands of streams, posing a huge management challenge. Currently, spawners are enumerated at just a few streams because of reliance on human counters and, rarely, sonar. The ability to detect organisms by shed tissue (environmental DNA, eDNA) promises a more efficient counting method. However, although eDNA correlates generally with local fish abundances, we do not know if eDNA can accurately enumerate salmon. Here we show that daily, and near‐daily, flow‐corrected eDNA rate closely tracks daily numbers of returning sockeye and coho spawners and outmigrating sockeye smolts. eDNA thus promises accurate and efficient enumeration, but to deliver the most robust numbers will need higher‐resolution stream‐flow data, at‐least‐daily sampling, and a focus on species with simple life histories, since shedding rate varies amongst jacks, juveniles, and adults

    Molecular techniques reveal cryptic life history and demographic processes of a critically endangered marine turtle

    Get PDF
    The concept of ‘effective population size’ (Ne), which quantifies how quickly a population will lose genetic variability, is one of the most important contributions of theoretical evolutionary biology to practical conservation management. Ne is often much lower than actual population size: how much so depends on key life history and demographic parameters, such as mating systems and population connectivity, that often remain unknown for species of conservation concern. Molecular techniques allow the indirect study of these parameters, as well as the estimation of current and historical Ne. Here, we use genotyping to assess the genetic health of an important population of the critically endangered hawksbill turtle (Eretmochelys imbricata), a slow-to-mature, difficult-to-observe species with a long history of severe overhunting. Our results were surprisingly positive: we found that the study population, located in the Republic of Seychelles, Indian Ocean, has a relatively large Ne, estimated to exceed 1000, and showed no evidence of a recent reduction in Ne (i.e. no genetic bottleneck). Furthermore, molecular inferences suggest the species' mating system is conducive to maintaining a large Ne, with a relatively large and widely distributed male population promoting considerable gene flow amongst nesting sites across the Seychelles area. This may also be reinforced by the movement of females between nesting sites. Our study underlines how molecular techniques can help to inform conservation biology. In this case our results suggest that this important hawksbill population is starting from a relatively strong position as it faces new challenges, such as global climate change

    Woodland Recovery after Suppression of Deer: Cascade effects for Small Mammals, Wood Mice (Apodemus sylvaticus) and Bank Voles (Myodes glareolus)

    Get PDF
    Over the past century, increases in both density and distribution of deer species in the Northern Hemisphere have resulted in major changes in ground flora and undergrowth vegetation of woodland habitats, and consequentially the animal communities that inhabit them. In this study, we tested whether recovery in the vegetative habitat of a woodland due to effective deer management (from a peak of 0.4–1.5 to <0.17 deer per ha) had translated to the small mammal community as an example of a higher order cascade effect. We compared deer-free exclosures with neighboring open woodland using capture-mark-recapture (CMR) methods to see if the significant difference in bank vole (Myodes glareolus) and wood mouse (Apodemus sylvaticus) numbers between these environments from 2001–2003 persisted in 2010. Using the multi-state Robust Design method in program MARK we found survival and abundance of both voles and mice to be equivalent between the open woodland and the experimental exclosures with no differences in various metrics of population structure (age structure, sex composition, reproductive activity) and individual fitness (weight), although the vole population showed variation both locally and temporally. This suggests that the vegetative habitat - having passed some threshold of complexity due to lowered deer density - has allowed recovery of the small mammal community, although patch dynamics associated with vegetation complexity still remain. We conclude that the response of small mammal communities to environmental disturbance such as intense browsing pressure can be rapidly reversed once the disturbing agent has been removed and the vegetative habitat is allowed to increase in density and complexity, although we encourage caution, as a source/sink dynamic may emerge between old growth patches and the recently disturbed habitat under harsh conditions

    The alluring simplicity and complex reality of genetic rescue

    Get PDF
    A series of important new theoretical, experimental and observational studies demonstrate that just a few immigrants can have positive immediate impacts on the evolutionary trajectory of local populations. In many cases, a low level of immigration into small populations has produced fitness benefits that are greater than those predicted by theoretical models, resulting in what has been termed ‘genetic rescue’. However, the opposite result (reduced fitness) can also be associated with immigration of genetically divergent individuals. Central to our understanding of genetic rescue are complex interactions among fundamental concepts in evolutionary and population biology, including both genetic and non-genetic (environmental, behavioral and demographic) factors. Developing testable models to predict when genetic rescue is likely to occur is a daunting challenge that will require carefully controlled, multigeneration experiments as well as creative use of information from natural ‘experiments’

    Data from: Genetic change for earlier migration timing in a population of pink salmon

    No full text
    To predict how climate change will influence populations it is necessary to understand the mechanisms, particularly microevolution and phenotypic plasticity, which allow populations to persist in novel environmental conditions. Although evidence for climate-induced phenotypic change in populations is widespread, evidence documenting that these phenotypic changes are due to microevolution is exceedingly rare. In this study we use 32 years of genetic data (17 complete generations) to determine whether there has been genetic change toward earlier migration timing in a population of pink salmon that shows phenotypic change; average migration time occurs nearly 2 weeks earlier than it did 40 years ago. Experimental genetic data support the hypothesis that there has been directional selection for earlier migration timing, resulting in a substantial decrease in the late migrating phenotype (from >30% to <10% of the total abundance). From 1983-2011 there was a significant decrease – over three fold – in the frequency of a genetic marker for late migration timing, but there were minimal changes in allele frequencies at other neutral loci. These results demonstrate there has been rapid microevolution for earlier migration timing in this population. Circadian rhythm genes, however, did not show any evidence for selective changes from 1993-2009

    Data from: Effects of the landscape on boreal toad gene flow: does the pattern-process relationship hold true across distinct landscapes at the northern range margin?

    No full text
    Understanding the impact of natural and anthropogenic landscape features on population connectivity is a major goal in evolutionary ecology and conservation. Discovery of dispersal barriers is important for predicting population responses to landscape and environmental changes, particularly for populations at geographic range margins. We used a landscape genetics approach to quantify the effects of landscape features on gene flow and connectivity of boreal toad (Bufo boreas) populations from two distinct landscapes in Southeast Alaska (Admiralty Island, ANM, and the Chilkat River Valley, CRV). We used two common methodologies for calculating resistance distances in landscape genetics studies (resistance based on least-cost paths and circuit theory). We found a strong effect of saltwater on genetic distance of CRV populations, but no landscape effects were found for the ANM populations. Our discordant results show the importance of examining multiple landscapes that differ in the variability of their features, in order to maximize detectability of underlying processes and allow results to be broadly applicable across regions. Saltwater serves as a physiological barrier to boreal toad gene flow and affects populations on a small geographic scale, yet there appear to be few other barriers to toad dispersal in this intact northern region
    • 

    corecore