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The alluring simplicity and complex
reality of genetic rescue
David A. Tallmon1, Gordon Luikart1 and Robin S. Waples2

aLaboratoire d’Ecologie Alpine, Génomique des Populations et Biodiversité, CNRS UMR 5553, Université Joseph Fourier, BP 53,

38041 Grenoble, Cedex 09, France
bNational Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA

A series of important new theoretical, experimental and

observational studies demonstrate that just a few

immigrants can have positive immediate impacts on

the evolutionary trajectory of local populations. In many

cases, a low level of immigration into small populations

has produced fitness benefits that are greater than those

predicted by theoretical models, resulting in what has

been termed ‘genetic rescue’. However, the opposite

result (reduced fitness) can also be associated with

immigration of genetically divergent individuals. Central

to our understanding of genetic rescue are complex

interactions among fundamental concepts in evolution-

ary and population biology, including both genetic and

non-genetic (environmental, behavioral and demo-

graphic) factors. Developing testable models to predict

when genetic rescue is likely to occur is a daunting

challenge that will require carefully controlled, multi-

generation experiments as well as creative use of

information from natural ‘experiments’.

The complex interplay of gene flow, mutation, drift and
selection in natural populations makes it difficult to
predict which evolutionary force will be most important
at any particular time or place [1]. For many years, the
demographic contribution of immigrants received the
primary emphasis in the literature [2–4], based on the
premise that the genetic effects of small population size
are less important than are other factors in determining
population persistence [5]. More recently, it has been
shown unequivocally that inbreeding resulting from
genetic drift in small populations can depress POPULATION

FITNESS (see Glossary) and increase extinction risk [6–9].
In an exciting new development, a variety of natural and
experimental studies demonstrate that immigrants can
effect a GENETIC RESCUE [10] of small, inbred, at-risk
populations by alleviating INBREEDING DEPRESSION and
boosting fitness.

Genetic rescue is generally considered to occur when
population fitness, inferred from some demographic vital
rate or phenotypic trait, increases by more than can be
attributed to the demographic contribution of immigrants
[11,12]. (In human medicine, genetic rescue is used in
reference to gene therapy, but this usage lies outside the
scope of this article.) Genetic rescue might play a subtle,

yet crucial role in the evolution of small natural
populations and can, under some circumstances, be an
effective conservation tool. Evidence that genes from a
pulse of immigrants can increase population growth rate
also has important implications for the study of METAPOPU-

LATION dynamics [13].
However, immigration of genetically divergent individ-

uals can also lead to the opposite effect: a reduction in
population fitness owing to OUTBREEDING DEPRESSION.
Whether immigrants increase or reduce population fitness
depends upon interactions among several genetic and non-
genetic factors, such as the degree of EPISTASIS, demogra-
phy, behavior and environmental context. This complexity
makes it difficult to predict whether any given immigra-
tion event will effect genetic rescue. Results of recent
studies should help to re-focus research toward a fuller
understanding of the evolutionary consequences of
migration among small populations, as researchers focus
more upon the complex interactions among forces that
underlie the evolution of spatially structured populations.

Fitness effects of immigrant genes

The fundamental premise of genetic rescue is that, if a
local population suffers inbreeding depression, immi-
grants can infuse new genetic variation that increases
fitness. Under this scenario, immigrants must produce
descendants that are, on average, more fit than those of

Glossary

Epistasis: interactions among genes at different loci that influence a phenotypic

trait.

Genetic rescue: an increase in population fitness owing to immigration of new

alleles.

Heterosis: elevated fitness of offspring from matings between genetically

divergent individuals (i.e. hybrid vigor).

Inbreeding depression: reduced fitness of offspring from matings between

related individuals, owing to reduced heterozygosity and/or increased

expression of deleterious, recessive alleles.

Intrinsic coadaptation: elevated fitness caused by positive epistasis.

Local adaptation: increase in fitness of a local population associated with an

increase in the frequency of alleles or allelic combinations favored by local

selection pressures.

Metapopulation: a population of populations linked by migration; in the classic

definition, local populations are subject to frequent extinction and recoloniza-

tion events.

Outbreeding depression: reduced fitness of offspring from matings between

genetically divergent individuals, owing to dilution of local adaptation and/or

disruption of epistasis.

Population fitness: mean fitness measured as population growth rate or

inferred from changes in reproduction or survival rates.Corresponding author: David A. Tallmon (dtallmon42@yahoo.com).
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residents to then raise the overall mean fitness of the local
population. Ideally, genetic rescue is measured by an
increase in population growth rate over multiple
generations.

The increase in fitness is thought to be due primarily to
HETEROSIS in the offspring that result from matings
between immigrants and local individuals. Heterosis
occurs via two mechanisms. First, immigrant alleles can
mask deleterious, recessive alleles that have achieved a
high local frequency via genetic drift, which can occur
when the product of population size (N) and the selection
coefficient (s) is less than one (Ns!1). Second, matings
between immigrants and local individuals produce highly
heterozygous offspring, which are often favored by natural
selection. The recent literature suggests masking of
deleterious alleles is the more prevalent mechanism of
heterosis [14].

To understand how immigration can either increase or
reduce population fitness, it is necessary to consider
multiple gene loci over multiple generations (Figure 1).
The F1 generation will have high heterozygosity (and,
hence, heterosis) as a result of allele frequency differences
between parental types. Positive epistasis will also be
maintained because one set of chromosomes from each
parental lineage remains intact. However, immigration
will also decrease LOCAL ADAPTATION by diluting local alleles
that make positive additive contributions to fitness.
Therefore, the net fitness effects of immigration in the
F1 generation can be either positive or negative, depend-
ing on whether the positive effects of heterosis more than
compensate for the dilution of local adaptation.

In subsequent generations (F2 and beyond), recombi-
nation will disrupt positive epistatic interactions among
parental alleles at different loci (Figure 1), thus reducing
INTRINSIC COADAPTATION. If the immigration rate is high and
from a genetically divergent source, population fitness can
be reduced in the F2 generation and beyond as immi-
grants dilute locally adaptive alleles and disrupt co-
adapted gene complexes. Furthermore, heterozygosity
and associated heterosis peaks in the F1 generation and
declines thereafter. As a consequence, descendants of
immigrants often exhibit initial heterosis followed by
subsequent outbreeding depression in following gener-
ations (Box 1), so whether a population is rescued
genetically by immigrants largely depends on the relative
importance of these opposing phenomena.

Observational studies of genetic rescue

Several recent studies report increased fitness in response
to low levels of immigration (gene flow) into populations
that have suffered recent declines (Table 1). For example,
immigrants apparently increased the hatching rate of
imperiled prairie chickens Tympanuchus cupido [15] and
reduced the proportion of stillborn births in a relict
population of adders Vipera berus, while increasing
molecular genetic variation, recruitment and population
growth rate [16]. A single immigrant is thought to have
spurred the growth of a stagnant, recently re-founded
Scandinavian wolf Canis lupus population [17,18].

These studies, which encompass a wide range of
vertebrate taxa, suggest that immigration can increase

the fitness of small, inbred populations by restoring
adaptive genetic variation. However, because each of
these studies was limited to a single, unreplicated
population without experimental controls, it is impossible
to attribute unequivocally the fitness increases to genetic
rescue rather than to other potentially confounding
factors, such as benign changes in the local environment
or non-genetic influences of immigrants. For example, it is
possible that the Scandinavian wolves were so closely
related they simply avoided breeding for behavioral
reasons until the unrelated immigrant arrived [17].

Experimental studies of genetic rescue

Other recent studies have isolated the genetic influences
of immigrants by controlling for their demographic
impacts, and they support the premise that immigration
can increase population fitness [19–23]. The most striking
example of genetic rescue is from a water flea Daphnia
magna metapopulation inhabiting Baltic seashore rock-
pools [19]. In replicate populations, the researchers mated
residents with residents, residents with immigrants and
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Figure 1. Genetic rescue. Genetic rescue depends upon whether selection favors the

new genotypes created by immigration. The mating of a genetically divergent

immigrant (homozygous for one set of alleles A and B at loci 1 and 2, respectively)

with an individual from a local population (homozygous for different alleles A 0 and

B 0) produces F1 offspring that are heterozygous and adds genetic variation to the

population. By the F2 generation, this mating generates ten possible genotypes at

two loci. In real populations, there are many more loci and novel genotypes

generated by immigration events.

Review TRENDS in Ecology and Evolution Vol.19 No.9 September 2004490

www.sciencedirect.com

http://www.sciencedirect.com


immigrants with immigrants. Repeated generations of
asexual reproduction locked in place F1 genotypes.
Because asexual reproduction prevented segregation of
alleles, selection could act over many generations on intact
resident, F1 hybrid, and pure immigrant genomes and
amplify fitness differences among lineages over time.
Ultimately, the hybrid F1 clonal lineages had an average
fitness that was over 35 times that of resident lineages.

This study demonstrates that inbreeding depression is
a biologically important phenomenon in this water flea
metapopulation and that immigration can increase fitness
greatly. Because entire life cycles were observed, fitness
impacts were integrated over the full life history and
amplified over time. By contrast, most studies infer fitness
effects of experimental treatments on only one or two
traits measured in a single generation. Selection intensity
on individual life history traits can vary greatly over time
and space, and the cumulative effects of selection on
multiple traits will interact to produce overall fitness
effects. This implies that short-term studies of a few traits
can result in misleading conclusions. For example, Bryant
et al. found a strong genetic rescue effect on larval
emergence in experimental house fly Musca domestica
populations, but only after an initial five-generation
period in which low levels of immigration provided no
detectable benefits to recipient populations [20].

Two recent plant studies provide further evidence of the
fitness benefits immigrants can provide to inbred popu-
lations. In experimentally inbred populations of the
mustard Brassica campestris, one immigrant per

generation significantly increased the fitness of four out
of six fitness traits in treatment populations compared
with (no immigrant) controls [21]. No fitness difference
was found between the one-immigrant and 2.5-immigrant
treatments, which suggests that only very low levels of
immigration are necessary for a fitness boost. However,
greater phenotypic divergence among populations was
found in the one-immigrant treatment compared with 2.5-
immigrant treatment. This is interesting because it shows
that lower immigration can facilitate local adaptation in
spatially structured populations that are subject to
variable or divergent selection pressures.

In small white campion Silene alba populations, gene
flow increased germination success and the success of
immigrant pollen correlated positively with the amount of
inbreeding in recipient populations [22,24]. This work
demonstrates inbreeding depression in these populations
and suggests that, all else being equal, populations that
are more inbred are more likely to benefit from a genetic
rescue effect. Together with the Brassica study and others
[23,25–28], this implies that very low levels of immigra-
tion could cause genetic rescue in inbred populations
without greatly constraining local adaptation. Fortu-
nately, it is increasingly possible to identify recently
inbred populations using new molecular-based statistical
approaches [29], and so candidate populations for genetic
rescue should be easier to find.

Rescue via other genetic pathways

Immigrants can also increase fitness via mechanisms
other than heterosis [12,30]. One such mechanism is
frequency-dependent selection for rare alleles. In small
populations of self-incompatible plants with few alleles at
the S-locus (which inhibits pollination by donors with the
same S-allele type as the maternal plant), immigrant
pollen with novel S-alleles can substantially increase
reproductive success [31–33]. There is also evidence in
Hymenoptera that frequency-dependent selection for
novel sex-determining alleles introduced into bottle-
necked populations by immigrants would raise colony
fitness by increasing the frequency of diploid heterozy-
gotes (females, which contribute to colony success), at the
expense of diploid homozygotes (males, which drain
resources) [34].

Gemmell and colleagues hypothesize that female
immigrants might also benefit small populations by
introducing new mitochondrial DNA (mtDNA) alleles,
which are maternally inherited in most species [35]. They
suggest that mtDNA alleles with negative fitness effects
(e.g. on male fertility) would become fixed in small
populations, because selection acts less efficiently (and
differently) on mtDNA alleles, owing to their maternal
inheritance, than it does on nuclear alleles [36]. In this
scenario, immigrant females that pass on superior mtDNA
alleles would boost population fitness with their extra-
nuclear genetic contributions.

Inferences for metapopulation conservation

The upshot of these recent studies is that genetic rescue
could be crucially important to entire metapopulations by
reducing local inbreeding depression or adding adaptive

Box 1. Heterosis and outbreeding depression

Initial heterosis, followed by outbreeding depression, has been

observed recently in taxa as diverse as angiosperms [62,63],

copepods [64], insects [65], birds [66] and mammals [67]. In the

marine copepod Tigriopus californicus, Burton, Edmands and

colleagues found heterosis in F1 hybrids followed by F2 outbreeding

depression levels that correlated with the genetic divergence

between source and recipient populations [64,68,69]. In Fenster

and Galloway’s studies of the partridge pea Chamaecrista fascicu-

late, F1 crosses of individuals from populations at all distances

studied (0.1–2000 km) showed heterosis, thus demonstrating

inbreeding depression within populations [62,63,70]. Subsequently,

outbreeding depression was found in crosses from populations

separated by R1000 km, but not until the F3 generation. Because

unlinked genes begin recombining in the F2 generation, the

appearance of consistent outbreeding depression only in the F3

generation demonstrates that disruption of epistasis as a result of

linked genes can continue to reduce fitness beyond the F2

generation. Evidence also suggests that cytonuclear co-adaptations

(i.e. the coadaptation of nuclear and cytoplasmic organelle genes)

can contribute to outbreeding depression [70,71].

In a remarkable example of intrinsic coadaptation, Gharrett et al.

found outbreeding depression in crosses of two pink salmon

Oncorhynchus gorbuscha populations that spawn in the same

location (and, hence, experience on average the same environment)

but are isolated temporally because of strict even- or odd-year life

cycles [72]. Inter-year crosses showed outbreeding depression in the

F2 (but not F1) generation, which provides evidence for disruption of

positive epistasis following recombination. These theoretical results

help to explain that even the same selection pressures (on average)

over many generations do not guarantee a similar genetic archi-

tecture, which, in turn, suggests that extensive mixing of popu-

lations experiencing similar selective regimes might increase fitness

in real populations.
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alleles that increase the probability of local population
persistence. In turn, this bolstering of local populations
maintains a broad geographical distribution of popu-
lations that buffers overall metapopulation extinction
and provides future immigrants for other populations
[10]. A genetic rescue effect can improve the likelihood of
success of colonization events that might otherwise fail
because immigrants can reinforce colonizing populations
that often evolve from a few founders and quickly become
inbred [17,22]. From a conservation perspective, this also
means that genetic rescue might have an important
impact in the spread of unwanted invasive species along
the leading edge of invasion by supplying recently
established, small propagules with adequate genetic
variation to respond to selection and adapt to the new
environment [37]. Therefore, a useful strategy for redu-
cing the spread of invasive populations could be to
minimize the chances for genetic rescue to occur.

Although the term ‘genetic rescue’ is new, the under-
lying concepts are not. Similar to many other useful
concepts in evolution, the thread of genetic rescue can be
traced back to Charles Darwin and Sewall Wright (Box 2).
Recent theory has refined our understanding of genetic
rescue and shown that heterosis is maximized when local
population size is small, gene flow is low and selection
intensity is low or intermediate [38,39]. These results are

germane, because reductions in local population size (and,
hence, greater drift and less efficient natural selection)
and restrictions in gene flow are two of the primary
consequences of the ongoing worldwide habitat fragmen-
tation crisis [40]. This suggests that anthropogenic
influences will increase the number of cases where genetic
rescue will be an important evolutionary phenomenon and
effective conservation tool.

Complicating genetic factors

In spite of these exciting results, several important
caveats apply to the laboratory and field studies reporting
genetic rescue that should temper the use of genetic
rescue as a management tool. First, most laboratory
studies have used highly inbred lines or populations. The
level of inbreeding typically was equivalent to full-sib
mating for two generations or more, so it is not surprising
that mating with an immigrant would provide fitness
benefits. It is difficult to translate these experimental
results directly to natural populations in which inbreeding
levels are usually unknown and unlikely to be as high.

Second, the experimental populations and immigrants
are usually derived from a single source population. Given
that immigrants share a common genetic architecture
with the recipient population, the chances of outbreeding
depression are reduced. Finally, most studies have

Table 1. Recent empirical studies showing genetic rescue effectsa

Species Study

typeb

Context Immigrant sourcec Study

lengthd

Primary results Refs

Animal

Water flea Daphnia

magna

Exp Field and laboratory

populations

Nearby population F1 Population growth rate many times

greater in outbred than in inbred

populations

[19]

House fly Musca

domestica

Exp Laboratory populations Same population F20 Pupal emergence in immigrant

populations greater than controls

[20]

Fruit fly Drosophila

melanogaster

Exp Laboratory populations Same population F3 Reproductive fitness in immigrant

populations twice that of the controls

[23]

Flower beetle Tribolium

castenuem

Exp Laboratory populations Same population F20 Population growth rate higher in

populations receiving immigrants

from high fitness (but not low fitness)

populations

[41]

Adder Vipera berus Obs Isolated population Distant population F1 Population growth rate increased,

stillborn birth rate decreased

[16]

Prairie chicken Tympa-

nuchus cupido

Obs Isolated population Distant populations F1 Egg viability increased [15]

Song sparrow Melos-

piza melodia

Obs Isolated population Unknown population F2 F1 fitness elevated, but F2 fitness

lower

[78]

Scandinavian wolf

Canis lupus

Obs Isolated population Unknown population F2 Population growth rate increased [17]

Plant

Mustard Brassica cam-

pestris

Exp Outdoor populations Same population F6 Immigrant pollen increased 4/6 fit-

ness traits

[21]

White campion Silene

alba

Exp Greenhouse study of

field-collected plants

Nearby populations F1 Immigrant pollen increased germina-

tion success in peripheral populations

[11]

Scarlet gilia Ipomopsis

aggregata

Exp Isolated populations Distant population F1 In small population only, seed mass

and germination increased by immi-

grant pollen

[25]

Yellow pitcher plant

Sarracenia flava

Exp Isolated populations Distant population F1 Plant height increased by immigrant

pollen

[26]

Scurvy grass Cochlearia

bavarica

Exp Outdoor populations Nearby populations F1 Seed mass and plant size increased

by immigrant pollen

[28]

aOnly studies that show population fitness responses to treatments are included.
bObs, observational; Exp, experimental.
cSource population for immigrant individuals. In many experiments, immigrants are recent descendants from same source as recipient populations.
dInferred study length in generations from first immigration event, sometimes not explicitly stated in studies.
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followed results only through the F1 generation, where
heterosis is maximized and outbreeding depression is
often not yet expressed.

Still, although there is no doubt that immigration from
amaladapted source can reduce fitness and constrain local
adaptation [41–43], the idea that limited immigration can
play a more positive role in evolution has received
renewed attention [41,44–46]. A key to resolving the
general importance of genetic rescue is understanding the
relative importance of interactions among genes versus
the additive effects of individual genes in determining the
fitness of populations – a debate that dates back to Fisher
and Wright and remains an area of active research. Some
recent experimental results suggest that, if favored alleles
are added to a population, they will spread because
selection can efficiently choose advantageous alleles
regardless of the genetic background [47]. This implies
that gene interactions might not be as important as single
locus, additive contributions to fitness and that, under
some circumstances, at least, selection can take care of
things if given enough time and a few copies of adaptive
alleles to act upon. Thus, immigrants can provide useful
alleles that, over long timescales, contribute to increased
population fitness even if the immediate descendants of
immigrants do not.

Complicating non-genetic factors

Given that individuals are not boxes of genes, demo-
graphic, behavioral and environmental factors can pro-
foundly influence the fitness contributions of immigrants
(Box 3). Demographic theory has predicted, and empirical
studies have demonstrated, that individuals of particular
ages or life stages can have disproportionate effects on the
trajectory of a population. Using standard demographic
data and analyses [48,49], one can predict the relative
impacts of immigrants by estimating their future repro-
ductive potential. For example, immigrants have little
chance of providing genetic rescue if they are immature
and have a low chance of survival to reproductive age, or
are too old and have little chance of future reproduction.
Joint consideration of demography and genetics in a single
theoretical framework can sharpen predictions of optimal
conditions for genetic rescue [50,51]. However, subtleties
of how demography is incorporated into population genetic

models can alter conclusions, so careful examination of
assumptions is necessary [52,53].

Even a rigorous investigation of genetic and demo-
graphic factors might be insufficient to predict reliably
whether genetic rescue will occur, because important
behavioral subtleties such as mate choice, dominance
hierarchies and infanticide, can also influence the evol-
utionary impact of immigrants. For example, female mice
Mus domesticus prefer genetically dissimilar males, which
would favor immigrant males and facilitate genetic
rescue. However, they also assess male quality, in addition
to genetic dissimilarity, in choosing among potential
mates [54], which complicates predictions of how well
immigrant males might reproduce.

Furthermore, in some species, a successful male
immigrant might kill existing juveniles, as occurs, for
example, with immigrant adult male brown bears Ursus
arctos following removal of local adult males by hunters
[55]. In general, immigrants could have widely varying
reproductive success depending upon interactions with
local individuals. Thus, they could provide either no, or a
great deal, of gene flow, which makes tenuous studies
uninformed by behavioral or mating system data [56].

Immigrants might also serve as vectors for disease-
causing parasites and pathogens, thus leading to the
opposite of a rescue effect [57,58]. Little empirical evidence
is available to indicate under what conditions the genetic
rescue benefits of low levels of immigration outweigh the
increased risk of disease transfer.

From the above considerations, it is clear that, even if
one considers only biological consequences for the species
of interest, evaluating and predicting the consequences of
a genetic rescue attempt is exceedingly complex. In a
conservation context, biological theory can provide
insights, but broader considerations are also likely to be
relevant. For example, genetic rescue efforts for some at-
risk species have economic, social, legal and political
ramifications. Integrating these types of consideration
into an overall cost-benefit analysis will be challenging but
necessary [59].

Future studies

A nagging limitation is how little we know about the joint
impacts of inbreeding and outbreeding depression in

Box 2. The conceptual foundations of genetic rescue

The concept of genetic rescue was presaged by Charles Darwin, who,

in his extensive surveys of empirical data to better understand

evolutionary processes, noted that (i) isolated populations often suffer

from inbreeding and inbreeding depression, and that (ii) immigration

(‘new blood’) can help recover a population’s fitness [73]. Although

Darwin’s observations are over 100 years old and report insights from

husbandry that probably extend back millennia to the early days of

domestications, theory to understand these observations is still being

developed.

The seminal theoretical work relevant to genetic rescue was

proposed by Sewall Wright, who was interested in the effects of

immigration among populations linked by gene flow. He showed that

one migrant per generation among populations equally linked by

immigration was adequate to keep the same neutral alleles segregat-

ing in all populations, and that the relative strength of gene flow and

selection determined the fate of non-neutral alleles [74,75]. Wright’s

contributions remain the foundation for much of the ongoing research

related to population subdivision, migration and the distribution of

genetic variation in neutral and selected loci and traits.

Recent models by Whitlock and colleagues have expanded

Wright’s work to include heterosis in immigrant offspring [38,39].

These efforts demonstrate that, as small isolated populations diverge,

they become fixed for different deleterious alleles at different loci. As a

result, immigrants bring in alleles that mask local deleterious alleles,

immigrant offspring show higher fitness than local offspring, and the

effective immigration rate (i.e. gene flow) is elevated over that

expected from neutral theory as immigrant alleles increase rapidly in

frequency owing to selection. These results help to explain some of

the recent remarkable results from the laboratory and field, even

though they are based upon simple single-locus population genetic

models and do not include heterozygote advantage or other genetic

mechanisms that might increase fitness.
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natural populations, except that they probably occur
frequently and simultaneously [60]. A key evolutionary
question is whether the heterotic effects of a few successful
immigrants will outweigh reductions in fitness owing to
outbreeding depression. Susceptibility to these two factors

varies considerably among taxa and specific circum-
stances, including population history and recent inbreed-
ing levels, degree of local adaptation and genetic
divergence between immigrants and recipient popu-
lations. Given the paucity of data addressing this issue
for wild or experimental populations, it is difficult to
predict with any certainty whether the net genetic effects
will be positive or negative for any unstudied system. This
is a sobering truth for applied conservation efforts.
However, empirical data do demonstrate that low levels
of immigration can provide considerable fitness benefits to
recently isolated, inbred populations, and recent molecu-
lar-based statistical advances will help to identify these
populations efficiently [29,61].

A daunting challenge is to develop a general theory of
rescue effects that incorporates genetics, in addition to
demography, behavior and disease ecology; all factors that
can be shown to be of preeminent importance in specific
cases. The crux of the challenge is formulating theories
that are simple enough to be tested empirically and that
are useful beyond only narrow conditions. There is a vital
role for multi-generation experiments in developing this
theory, as well as for creative uses of meta-analyses to
distill collective insights from numerous imperfectly
controlled laboratory and natural ‘experiments’.
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