1,051 research outputs found

    Exponential increase in postprandial blood-glucose exposure with increasing carbohydrate loads using a linear carbohydrate-to-insulin ratio

    Get PDF
    Background. Postprandial glucose excursions contribute significantly to average blood glucose, glycaemic variability and cardiovascular risk. Carbohydrate counting is a method of insulin dosing that balances carbohydrate load to insulin dose using a fixed ratio. Many patients and current insulin pumps calculate insulin delivery for meals based on a linear carbohydrate-to-insulin relationship. It is our hypothesis that a non-linear relationship exists between the amounts of carbohydrate consumed and the insulin required to cover it.Aim. To document blood glucose exposure in response to increasing carbohydrate loads on fixed carbohydrate-to-insulin ratios.Methods. Five type 1 diabetic subjects receiving insulin pump therapy with good control were recruited. Morning basal rates and carbohydrateto-insulin ratios were optimised. A Medtronic glucose sensor was used for 5 days to collect data for area-under-the-curve (AUC) analysis, during which standardised meals of increasing carbohydrate loads were consumed.Results. Increasing carbohydrate loads using a fixed carbohydrate-to-insulin ratio resulted in increasing glucose AUC. The relationship was found to be exponential rather than linear. Late postprandial hypoglycaemia followed carbohydrate loads of >60 g and this was often followed by rebound hyperglycaemia that lasted >6 hours.Conclusion. A non-linear relationship exists between carbohydrates consumed and the insulin required to cover them. This has implications for control of postprandial blood sugars, especially when consuming large carbohydrate loads. Further studies are required to look at the optimal ratios, duration and type of insulin boluses required to cover increasing carbohydrate loads

    Why Depressed Mood is Adaptive: A Numerical Proof of Principle for an Evolutionary Systems Theory of Depression.

    Get PDF
    We provide a proof of principle for an evolutionary systems theory (EST) of depression. This theory suggests that normative depressive symptoms counter socioenvironmental volatility by increasing interpersonal support via social signalling and that this response depends upon the encoding of uncertainty about social contingencies, which can be targeted by neuromodulatory antidepressants. We simulated agents that committed to a series of decisions in a social two-arm bandit task before and after social adversity, which precipitated depressive symptoms. Responses to social adversity were modelled under various combinations of social support and pharmacotherapy. The normative depressive phenotype responded positively to social support and simulated treatments with antidepressants. Attracting social support and administering antidepressants also alleviated anhedonia and social withdrawal, speaking to improvements in interpersonal relationships. These results support the EST of depression by demonstrating that following adversity, normative depressed mood preserved social inclusion with appropriate interpersonal support or pharmacotherapy

    The Depressed Brain: An Evolutionary Systems Theory

    Get PDF
    Major depression is a debilitating condition characterised by diverse neurocognitive and behavioural deficits. Nevertheless, our species-typical capacity for depressed mood implies that it serves an adaptive function. Here we apply an interdisciplinary theory of brain function to explain depressed mood and its clinical manifestations. Combining insights from the free-energy principle (FEP) with evolutionary theorising in psychology, we argue that depression reflects an adaptive response to perceived threats of aversive social outcomes (e.g., exclusion) that minimises the likelihood of surprising interpersonal exchanges (i.e., those with unpredictable outcomes). We suggest that psychopathology typically arises from ineffectual attempts to alleviate interpersonal difficulties and/or hyper-reactive neurobiological responses to social stress (i.e., uncertainty), which often stems from early experience that social uncertainty is difficult to resolve

    Influence of Solvent Composition on the Crystal Morphology and Structure of p-Aminobenzoic Acid Crystallised from Mixed Ethanol and Nitromethane Solutions

    Get PDF
    The crystallization of α-p-aminobenzoic acid (pABA) from mixed solutions in ethanol (EtOH) and nitromethane (NMe) is reported. From solutions with compositions >60 wt % NMe, the known α-polymorph of pABA appears. In contrast, crystals prepared from mixed solvent with <60 wt % NMe reveal the presence of a previously unknown NMe solvate, which crystallizes concomitantly with the α-form. The crystal structure of this new form has been determined and is compared with the previously known structure of the α-polymorph. The crystal structure of the NMe solvate has similar synthonic interactions with respect to α-pABA, in particular, the OH···O H-bonded dimers and the NH···O H-bonds between the pABA molecules. However, the π–π stacking interactions between the phenyl ring groups are found to be much more offset and do not form a continuous chain through the structure, as found in α-pABA. The synthonic interactions in the NMe solvate structure are generally weaker than those found in α-pABA, and the lattice energy is calculated to be significantly lower, suggesting the solvate structure is metastable with respect to α-pABA. The impact of NMe on the morphology of α-pABA crystals, together with molecular modelling results suggest that this solvent is able to disrupt the π–π stacking interactions that dominate growth along the needle (b-axis) direction of α-pABA, and are intimately linked to the ultimate formation of the solvate

    Alcohol consumption and lifetime change in cognitive ability:a gene × environment interaction study

    Get PDF
    Studies of the effect of alcohol consumption on cognitive ability are often confounded. One approach to avoid confounding is the Mendelian randomization design. Here, we used such a design to test the hypothesis that a genetic score for alcohol processing capacity moderates the association between alcohol consumption and lifetime change in cognitive ability. Members of the Lothian Birth Cohort 1936 completed the same test of intelligence at age 11 and 70 years. They were assessed for recent alcohol consumption in later life and genotyped for a set of four single-nucleotide polymorphisms in three alcohol dehydrogenase genes. These variants were unrelated to late-life cognition or to socioeconomic status. We found a significant gene × alcohol consumption interaction on lifetime cognitive change (p = 0.007). Individuals with higher genetic ability to process alcohol showed relative improvements in cognitive ability with more consumption, whereas those with low processing capacity showed a negative relationship between cognitive change and alcohol consumption with more consumption. The effect of alcohol consumption on cognitive change may thus depend on genetic differences in the ability to metabolize alcohol

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics

    Get PDF
    We applied spFRET microscopy for direct observation of intranucleosomal DNA dynamics. Mononucleosomes, reconstituted with DNA containing a FRET pair at the dyad axis and exit of the nucleosome core particle, were immobilized through a 30 bp DNA tether on a polyethyleneglycol functionalized slide and visualized using Total Internal Reflection Fluorescence microscopy. FRET efficiency time-traces revealed two types of dynamics: acceptor blinking and intramolecular rearrangements. Both Cy5 and ATTO647N acceptor dyes showed severe blinking in a deoxygenated buffer in the presence of 2% βME. Replacing the triplet quencher βME with 1 mM Trolox eliminated most blinking effects. After suppression of blinking three subpopulations were observed: 90% appeared as dissociated complexes; the remaining 10% featured an average FRET efficiency in agreement with intact nucleosomes. In 97% of these intact nucleosomes no significant changes in FRET efficiency were observed in the experimentally accessible time window ranging from 10 ms to 10’s of seconds. However, 3% of the intact nucleosomes showed intervals with reduced FRET efficiency, clearly distinct from blinking, with a lifetime of 120 ms. These fluctuations can unambiguously be attributed to DNA breathing. Our findings illustrate not only the merits but also typical caveats encountered in single-molecule FRET studies on complex biological systems

    Biofilm formation at the solid-liquid and air-liquid interfaces by Acinetobacter species

    Get PDF
    Abstract Background: The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species
    corecore