5,778 research outputs found

    The Wide Field Imaging Interferometry Testbed

    Full text link
    We are developing a Wide-Field Imaging Interferometry Testbed (WIIT) in support of design studies for NASA's future space interferometry missions, in particular the SPIRIT and SPECS far-infrared/submillimeter interferometers. WIIT operates at optical wavelengths and uses Michelson beam combination to achieve both wide-field imaging and high-resolution spectroscopy. It will be used chiefly to test the feasibility of using a large-format detector array at the image plane of the sky to obtain wide-field interferometry images through mosaicing techniques. In this setup each detector pixel records interferograms corresponding to averaging a particular pointing range on the sky as the optical path length is scanned and as the baseline separation and orientation is varied. The final image is constructed through spatial and spectral Fourier transforms of the recorded interferograms for each pixel, followed by a mosaic/joint-deconvolution procedure of all the pixels. In this manner the image within the pointing range of each detector pixel is further resolved to an angular resolution corresponding to the maximum baseline separation for fringe measurements. We present the motivation for building the testbed, show the optical, mechanical, control, and data system design, and describe the image processing requirements and algorithms. WIIT is presently under construction at NASA's Goddard Space Flight Center.Comment: 7 pages, 3 figures, IEEE Aerospace Conference 200

    Links between parental life histories of wild salmon and the telomere lengths of their offspring

    Get PDF
    The importance of parental contributions to offspring development and subsequent performance is self-evident at a genomic level; however, parents can also affect offspring fitness by indirect genetic and environmental routes. The life history strategy that an individual adopts will be influenced by both genes and environment; and this may have important consequences for offspring. Recent research has linked telomere dynamics (i.e. telomere length and loss) in early life to future viability and longevity. Moreover, a number of studies have reported a heritable component to telomere length across a range of vertebrates, though the effects of other parental contribution pathways have been far less studied. By using wild Atlantic salmon with different parental life histories in an experimental split-brood IVF mating design and rearing the resulting families under standardised conditions, we show that there can be significant links between parental life history and offspring telomere length (studied at the embryo and fry stage). Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stage, but then became weaker through development. In contrast, paternal life history traits, such as the father's growth rate in early life, had a greater association in the later stages of offspring development. However, offspring telomere length was not significantly related to either maternal or paternal age at reproduction, nor to paternal sperm telomere length. This study demonstrates both the complexity and the importance of parental factors that can influence telomere length in early life

    Physical properties and solubility studies of Nifedipine-PEG 1450/HPMCAS-HF solid dispersions

    Get PDF
    Low-order high-energy nifedipine (NIF) solid dispersions (SDs) were generated by melt solvent amorphization with polyethylene glycol (PEG) 1450 and hypromellose acetate succinate (HPMCAS-HF) to increase NIF solubility while achieving acceptable physical stability. HPMCAS-HF was used as a crystallization inhibitor. Individual formulation components, their physical mixtures (PMs), and SDs were characterized by differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). NIF solubility and percent crystallinity (PC) were determined at the initial time and after 5 days stored at 25 °C and 60% RH. FTIR indicated that hydrogen bonding was involved with the amorphization process. FTIR showed that NIF:HPMCAS-HF intermolecular interactions were weaker than NIF:PEG 1450 interactions. NIF:PEG 1450 SD solubilities were significantly higher than their PM counterparts (p \u3c 0.0001). The solubilities of NIF:PEG 1450:HPMCAS-HF SDs were significantly higher than their corresponding NIF:PEG 1450 SDs (p \u3c 0.0001-0.043). All the SD solubilities showed a statistically significant decrease (p \u3c 0.0001) after storage for 5 days. SDs PC were statistically lower than their comparable PMs (p \u3c 0.0001). The PCs of SDs with HPMCAS-HF were significantly lower than SDs not containing only PEG 1450. All SDs exhibited a significant increase in PC (p \u3c 0.0001–0.0089) on storage. Thermogravimetric analysis results showed that HPMCAS-HF bound water at higher temperatures than PEG 1450 (p \u3c 0.0001–0.0039). HPMCAS-HF slowed the crystallization process of SDs, although it did not completely inhibit NIF crystal growth

    Integrated thermochronology and organic maturation studies in the South Portuguese Zone and Algarve Basin (South Portugal)

    Get PDF
    This PhD research project started in February this year. Its main goal is to combine apatite fission track analysis (AFTA) with other low-temperature thermochronometers (zircon fission track, (U-Th)/He apatite) to construct temperature-time paths for the South Portuguese Zone and the Algarve Basin

    Coordination via Interaction Constraints I: Local Logic

    Full text link
    Wegner describes coordination as constrained interaction. We take this approach literally and define a coordination model based on interaction constraints and partial, iterative and interactive constraint satisfaction. Our model captures behaviour described in terms of synchronisation and data flow constraints, plus various modes of interaction with the outside world provided by external constraint symbols, on-the-fly constraint generation, and coordination variables. Underlying our approach is an engine performing (partial) constraint satisfaction of the sets of constraints. Our model extends previous work on three counts: firstly, a more advanced notion of external interaction is offered; secondly, our approach enables local satisfaction of constraints with appropriate partial solutions, avoiding global synchronisation over the entire constraints set; and, as a consequence, constraint satisfaction can finally occur concurrently, and multiple parts of a set of constraints can be solved and interact with the outside world in an asynchronous manner, unless synchronisation is required by the constraints. This paper describes the underlying logic, which enables a notion of local solution, and relates this logic to the more global approach of our previous work based on classical logic

    Magnetic Behavior of Iron-Oxoclusters Prepared in an Organosilica Sol–Gel Matrix

    Get PDF
    The crystal structure and magnetization of nanoscale enTMOS–Fe2O3 sol–gel composites with weight iron concentration x, varying from 0.003 to 0.065, have been studied by the transmission electron microscopy technique and a superconducting quantum interference device magnetometer. The clusters are crystallized in a hexagonal crystal structure. All the samples demonstrate a superparamagnetic behavior with antiferomagnetic cluster–cluster coupling at low temperature. The effective paramagnetic moment, ÎŒeff, has been found to vary in the range from 5.9 (S=5/2) to 2.5 ÎŒB per iron ion. The concentration dependence of the ÎŒeff shows a minimum for x∌0.01. At a low iron concentration x\u3c0.01, ÎŒeff is practically independent of x and equals about 6 ÎŒB per Fe ion. The concentration interval 0.01\u3cx\u3c0.07 is characterized by a monotonical increase of ÎŒeff from 2.5 to about 3 ÎŒB per Fe ion. Thus, an abrupt variation of ÎŒeff (about two times) is observed at x≈0.01. It has been shown that such behavior can be caused by competition between the uncoupled “surface” and antiferromagnetically coupled “bulk” Fe magnetic moments

    Knowledge-based vision and simple visual machines

    Get PDF
    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong

    The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster

    Full text link
    Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530. Previous observations with FUSE have revealed Ly beta - Ly theta lines at this redshift, thereby accurately constraining N(H I). We model the ionization of the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is pressure confined by an external medium because gravitational confinement would require a very high ratio of dark matter to baryonic matter. Based on Milky Way sight lines in which carbon and silicon abundances have been reliably measured in the same interstellar cloud (including new measurements presented herein), we argue that the overabundance of Si relative to C is not due to dust depletion. Instead, this probably indicates that the gas has been predominately enriched by Type II supernovae. Such enrichment is most plausibly provided by an unbound galactic wind, given the absence of galaxies within a projected distance of 100 kpc and the presence of galaxies capable of driving a wind at larger distances. We also constrain the metallicity and physical conditions of the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV limit requires T > 10^{5.3} K. For either collisional ionization or photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio
    • 

    corecore