321 research outputs found

    SIGAME simulations of the [CII], [OI] and [OIII] line emission from star forming galaxies at z ~ 6

    Get PDF
    Of the almost 40 star forming galaxies at z>~5 (not counting QSOs) observed in [CII] to date, nearly half are either very faint in [CII], or not detected at all, and fall well below expectations based on locally derived relations between star formation rate (SFR) and [CII] luminosity. Combining cosmological zoom simulations of galaxies with SIGAME (SImulator of GAlaxy Millimeter/submillimeter Emission) we have modeled the multi-phased interstellar medium (ISM) and its emission in [CII], [OI] and [OIII], from 30 main sequence galaxies at z~6 with star formation rates ~3-23Msun/yr, stellar masses ~(0.7-8)x10^9Msun, and metallicities ~(0.1-0.4)xZsun. The simulations are able to reproduce the aforementioned [CII]-faintness at z>5, match two of the three existing z>~5 detections of [OIII], and are furthermore roughly consistent with the [OI] and [OIII] luminosity relations with SFR observed for local starburst galaxies. We find that the [CII] emission is dominated by the diffuse ionized gas phase and molecular clouds, which on average contribute ~66% and ~27%, respectively. The molecular gas, which constitutes only ~10% of the total gas mass is thus a more efficient emitter of [CII] than the ionized gas making up ~85% of the total gas mass. A principal component analysis shows that the [CII] luminosity correlates with the star formation activity as well as average metallicity. The low metallicities of our simulations together with their low molecular gas mass fractions can account for their [CII]-faintness, and we suggest these factors may also be responsible for the [CII]-faint normal galaxies observed at these early epochs.Comment: 24 pages, 14 figures. Accepted for publication in the Astrophysical Journa

    The Flux Auto- and Cross-Correlation of the Lyman-alpha Forest. II. Modelling Anisotropies with Cosmological Hydrodynamic Simulations

    Full text link
    The isotropy of the Lyman-alpha forest in real-space uniquely provides a measurement of cosmic geometry at z > 2. The angular diameter distance for which the correlation function along the line of sight and in the transverse direction agree corresponds to the correct cosmological model. However, the Lyman-alpha forest is observed in redshift-space where distortions due to Hubble expansion, bulk flows, and thermal broadening introduce anisotropy. Similarly, a spectrograph's line spread function affects the autocorrelation and cross-correlation differently. In this the second paper of a series on using the Lyman-alpha forest observed in pairs of QSOs for a new application of the Alcock-Paczynski (AP) test, these anisotropies and related sources of potential systematic error are investigated with cosmological hydrodynamic simulations. Three prescriptions for galactic outflow were compared and found to have only a marginal effect on the Lyman-alpha flux correlation (which changed by at most 7% with use of the currently favored variable-momentum wind model vs. no winds at all). An approximate solution for obtaining the zero-lag cross-correlation corresponding to arbitrary spectral resolution directly from the zero-lag cross-correlation computed at full-resolution (good to within 2% at the scales of interest) is presented. Uncertainty in the observationally determined mean flux decrement of the Lyman-alpha forest was found to be the dominant source of systematic error; however, this is reduced significantly when considering correlation ratios. We describe a simple scheme for implementing our results, while mitigating systematic errors, in the context of a future application of the AP test.Comment: 20 page

    ASymba: HI global profile asymmetries in the Simba simulation

    Get PDF
    Asymmetry in the spatially integrated, 1D HI global profiles of galaxies can inform us on both internal (e.g. outflows) and external (e.g. mergers, tidal interactions, ram pressure stripping) processes that shape galaxy evolution. Understanding which of these primarily drive HI profile asymmetry is of particular interest. In the lead-up to SKA pathfinder and SKA HI emission surveys, hydrodynamical simulations have proved to be a useful resource for such studies. Here we present the methodology behind, as well as first results, of ASymba: Asymmetries in HI of Simba galaxies, the first time this simulation suite has been used for this type of study. We generate mock observations of the HI content of these galaxies and calculate the profile asymmetries using three different methods. We find that MHIM_{\rm HI} has the strongest correlation with all asymmetry measures, with weaker correlations also found with the number of mergers a galaxy has undergone, and gas and galaxy rotation. We also find good agreement with the xGASS sample, in that galaxies with highly asymmetric profiles tend to have lower HI gas fractions than galaxies with symmetric profiles, and additionally find the same holds in sSFR parameter space. For low HI mass galaxies, it is difficult to distinguish between asymmetric and symmetric galaxies, but this becomes achievable in the high HI mass population. These results showcase the potential of ASymba and provide the groundwork for further studies, including comparison to upcoming large HI emission surveys.Comment: 17 pages, 10 figures, 2 tables. Accepted in MNRA

    Cosmological Limits on the Neutrino Mass from the Lya Forest

    Full text link
    The Lya forest in quasar spectra probes scales where massive neutrinos can strongly suppress the growth of mass fluctuations. Using hydrodynamic simulations with massive neutrinos, we successfully test techniques developed to measure the mass power spectrum from the forest. A recent observational measurement in conjunction with a conservative implementation of other cosmological constraints places upper limits on the neutrino mass: m_nu < 5.5 eV for all values of Omega_m, and m_nu < 2.4 (Omega_m/0.17 -1) eV, if 0.2 < Omega_m <0.5 as currently observationally favored (both 95 % C.L.).Comment: 4 pages, 2 ps figures, REVTex, submitted to Phys. Rev. Let

    Lyman-alpha Forest Constraints on the Mass of Warm Dark Matter and the Shape of the Linear Power Spectrum

    Get PDF
    High resolution N-body simulations of cold dark matter (CDM) models predict that galaxies and clusters have cuspy halos with excessive substructure. Observations reveal smooth halos with central density cores. One possible resolution of this conflict is that the dark matter is warm (WDM); this will suppress the power spectrum on small scales. The Lyman-alpha forest is a powerful probe of the linear power spectrum on these scales. We use collisionless N-body simulations to follow the evolution of structure in WDM models, and analyze artificial Lyman-alpha forest spectra extracted from them. By requiring that there is enough small-scale power in the linear power spectrum to reproduce the observed properties of the Lyman-alpha forest in quasar spectra, we derive a lower limit to the mass of the WDM particle of 750 eV. This limit is robust to reasonable uncertainties in our assumption about the temperature of the mean density gas (T0) at z=3. We argue that any model that suppresses the CDM linear theory power spectrum more severely than a 750 eV WDM particle cannot produce the Lyman-alpha forest.Comment: 13 pages including 4 color Figures and 1 Table, submitted to ApJ Letter

    The halo mass function conditioned on density from the Millennium Simulation: insights into missing baryons and galaxy mass functions

    Full text link
    The baryon content of high-density regions in the universe is relevant to two critical unanswered questions: the workings of nurture effects on galaxies and the whereabouts of the missing baryons. In this paper, we analyze the distribution of dark matter and semianalytical galaxies in the Millennium Simulation to investigate these problems. Applying the same density field reconstruction schemes as used for the overall matter distribution to the matter locked in halos we study the mass contribution of halos to the total mass budget at various background field densities, i.e., the conditional halo mass function. In this context, we present a simple fitting formula for the cumulative mass function accurate to ~ 5% for halo masses between 10^{10} and 10^{15}Msol/h. We find that in dense environments the halo mass function becomes top heavy and present corresponding fitting formulae for different redshifts. We demonstrate that the major fraction of matter in high-density fields is associated with galaxy groups. Since current X-ray surveys are able to nearly recover the universal baryon fraction within groups, our results indicate that the major part of the so-far undetected warm-hot intergalactic medium resides in low-density regions at low temperatures. Similarly, we show that the differences in galaxy mass functions with environment seen in observed and simulated data stem predominantly from differences in the mass distribution of halos. In particular, the hump in the galaxy mass function is associated with the central group galaxies, and the bimodality observed in the galaxy mass function is therefore interpreted as that of central galaxies versus satellites.Comment: aligned with version published in Ap

    Do Hot Haloes Around Galaxies Contain the Missing Baryons?

    Full text link
    Galaxies are missing most of their baryons, and many models predict these baryons lie in a hot halo around galaxies. We establish observationally motivated constraints on the mass and radii of these haloes using a variety of independent arguments. First, the observed dispersion measure of pulsars in the Large Magellanic Cloud allows us to constrain the hot halo around the Milky Way: if it obeys the standard NFW profile, it must contain less than 4-5% of the missing baryons from the Galaxy. This is similar to other upper limits on the Galactic hot halo, such as the soft X-ray background and the pressure around high velocity clouds. Second, we note that the X-ray surface brightness of hot haloes with NFW profiles around large isolated galaxies is high enough that such emission should be observed, unless their haloes contain less than 10-25% of their missing baryons. Third, we place constraints on the column density of hot haloes using nondetections of OVII absorption along AGN sightlines: in general they must contain less than 70% of the missing baryons or extend to no more than 40 kpc. Flattening the density profile of galactic hot haloes weakens the surface brightness constraint so that a typical L∗_* galaxy may hold half its missing baryons in its halo, but the OVII constraint remains unchanged, and around the Milky Way a flattened profile may only hold 6−136-13% of the missing baryons from the Galaxy (2−4×1010M⊙2-4 \times 10^{10} M_{\odot}). We also show that AGN and supernovae at low to moderate redshift - the theoretical sources of winds responsible for driving out the missing baryons - do not produce the expected correlations with the baryonic Tully-Fisher relationship and so are insufficient to explain the missing baryons from galaxies. We conclude that most of missing baryons from galaxies do not lie in hot haloes around the galaxies, and that the missing baryons never fell into the potential wells of protogalaxies in the first place. They may have been expelled from the galaxies as part of the process of galaxy formation.Comment: accepted for publication in the Astrophysical Journa

    The COS-Dwarfs Survey: The Carbon Reservoir Around sub-L* Galaxies

    Full text link
    We report new observations of circumgalactic gas from the COS-Dwarfs survey, a systematic investigation of the gaseous halos around 43 low-mass z ≀\leq 0.1 galaxies using background QSOs observed with the Cosmic Origins Spectrograph. From the projected 1D and 2D distribution of C IV absorption, we find that C IV absorption is detected out to ~ 0.5 Rvir_{vir} of the host galaxies. The C IV absorption strength falls off radially as a power law and beyond 0.5 Rvir_{vir}, no C IV absorption is detected above our sensitivity limit of ~ 50-100 mA˚\AA. We find a tentative correlation between detected C IV absorption strength and star formation, paralleling the strong correlation seen in highly ionized oxygen for L~L* galaxies by the COS-Halos survey. The data imply a large carbon reservoir in the CGM of these galaxies, corresponding to a minimum carbon mass of ≳\gtrsim 1.2×106\times 10^6 M⊙M_\odot out to ~ 110 kpc. This mass is comparable to the carbon mass in the ISM and more than the carbon mass currently in stars of these galaxies. The C IV absorption seen around these sub-L* galaxies can account for almost two-thirds of all WrW_r> 100 mA˚\AA C IV absorption detected at low z. Comparing the C IV covering fraction with hydrodynamical simulations, we find that an energy-driven wind model is consistent with the observations whereas a wind model of constant velocity fails to reproduce the CGM or the galaxy properties.Comment: 18 Pages, 11 Figures, ApJ 796 13
    • 

    corecore