195 research outputs found

    Possible deviations from Griffith's criterion in shallow slabs, and consequences on slab avalanche release

    No full text
    International audiencePossible reasons for deviations from Griffith's criterion in slab avalanche triggerings are examined. In the case of a major basal crack, we show (i) that the usual form of Griffith's criterion is valid if elastic energy is stored in a shallow and hard slab only, and (ii) that rapid healing of broken ice bonds may lead to shear toughnesses larger than expected from tensile toughness experiments. In the case of avalanches resulting from failure of multi-cracked weak layers, where a simple Griffith's criterion cannot be applied, frequency/size plots obtained from discrete elements and cellular automata simulations are shown to obey scale invariant power law distributions. These findings are confirmed by both frequency/acoustic emission duration and frequency/size plots obtained from field data, suggesting that avalanche triggerings may be described using the formalism of critical phenomena

    Factors affecting calcium oxalate dihydrate fragmented calculi regrowth

    Get PDF
    BACKGROUND: The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments. METHODS: Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase. RESULTS: Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions. CONCLUSION: The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three conditions. This observation suggests COD calculi residual fragments in the kidneys together with hypercalciuria and high urinary pH values may be a risk factor for stone growth. The study also showed the effectiveness of specific crystallization inhibitors in slowing calculi fragment growth

    GEOAI FOR MARINE ECOSYSTEM MONITORING: A COMPLETE WORKFLOW TO GENERATE MAPS FROM AI MODEL PREDICTIONS

    Get PDF
    Mapping and monitoring marine ecosystems imply several challenges for data collection and processing: water depth, restricted access to locations, instrumentation costs or weather constraints for sampling, among others. Nowadays, Artificial Intelligence (AI) and Geographic Information System (GIS) open source software can be combined in new kinds of workflows, to annotate and predict objects directly on georeferenced raster data (e.g. orthomosaics). Here, we describe and share the code of a generic method to train a deep learning model with spatial annotations and use it to directly generate model predictions as spatial features. This workflow has been tested and validated in three use cases related to marine ecosystem monitoring at different geographic scales: (i) segmentation of corals on orthomosaics made of underwater images to automate coral reef habitats mapping, (ii) detection and classification of fishing vessels on remote sensing satellite imagery to estimate a proxy of fishing effort (iii) segmentation of marine species and habitats on underwater images with a simple geolocation. Models have been successfully trained and the models predictions are displayed with maps in the three use cases

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2

    Full text link
    This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current

    Contribution du CNRS/IN2P3 Ă  l'upgrade d'ATLAS. Proposition soumise au Conseil Scientifique de l'IN2P3 du 21 Juin 2012

    Get PDF

    Diffraction techniques and vibrational spectroscopy opportunities to characterise bones

    Get PDF
    From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals are intimately mixed to assure particular mechanical properties
    • …
    corecore