27 research outputs found

    Investigating the role of Gag in protease inhibitor susceptibility amongst West African HIV-1 subtypes

    Get PDF
    HIV-1 Gag contributes to susceptibility of protease inhibitors (PIs) in the absence of known resistance mutations in the protease gene. For the majority of HIV-infected patients worldwide, PIs are the second, and last-line of therapy. Clinically, only around 20% of individuals who fail PI regimen develop major resistance mutations in protease. We previously showed that full-length Gagprotease-derived phenotypic susceptibility to PIs differed between HIV-1 CRF02_AG and subtype G-infected patients who went on to successfully suppress viral replication versus those who experienced virological failure of boosted lopinavir monotherapy as first-line treatment in a clinical trial. We hypothesised therefore that baseline PI susceptibility by Gag-protease phenotyping could be used to predict treatment outcomes for patients on second line, boosted-PI treatment in the real-world clinical setting in Nigeria, where subtypes CRF02_AG/G dominate the epidemic. We used clinical and demographic data; HIV-1subtype, sex, age, viral load, duration of treatment and baseline CD4 count to match individuals who experienced second-line failure with ritonavir-boosted PI-based ART (‘baseline failures’) to those who achieved virological response (‘baseline successes’) with virological failure defined by viral load <400 copies of HIV-1 RNA/mL by week 48. Using a single replication-cycle assay, we carried out in vitro phenotypic susceptibility testing of patient-derived viruses from these two groups. We found no impact of baseline HIV-1 Gagprotease-derived phenotypic susceptibility on outcomes of PI-based second-line ART, treatment outcome could not be predicted using baseline susceptibility alone. Secondly, we sought to explore the role of mutation in Gag-protease genotypic and phenotypic changes within patients who failed PI-based regimens without known drug resistance-associated protease mutations in order to identify novel determinants of PI resistance. We used longitudinal samples collected at baseline, and at virological failure to explore the role of Gag mutations. Using target enrichment and next-generation sequencing (NGS), followed by haplotype reconstruction and phenotypic drug assays and phylogenetic analysis, we reported for the first time a four-amino acid mutation signature in HIV-1, CRF02_AG matrix (S126del, H127del, T122A and G123E) which confer reduced susceptibility to the PI, lopinavir and atazanavir. Our multi-pronged genotypic and phenotypic approach to document emergence and temporal dynamics of a novel protease inhibitor resistance signature in HIV- 1 matrix domain reveals the interplay between Gag associated resistance and fitness

    In Vivo Emergence of a Novel Protease Inhibitor Resistance Signature in HIV-1 Matrix.

    Get PDF
    Protease inhibitors (PIs) are the second- and last-line therapy for the majority of HIV-infected patients worldwide. Only around 20% of individuals who fail PI regimens develop major resistance mutations in protease. We sought to explore the role of mutations in gag-pro genotypic and phenotypic changes in viruses from six Nigerian patients who failed PI-based regimens without known drug resistance-associated protease mutations in order to identify novel determinants of PI resistance. Target enrichment and next-generation sequencing (NGS) with the Illumina MiSeq system were followed by haplotype reconstruction. Full-length Gag-protease gene regions were amplified from baseline (pre-PI) and virologic failure (VF) samples, sequenced, and used to construct gag-pro-pseudotyped viruses. Phylogenetic analysis was performed using maximum-likelihood methods. Susceptibility to lopinavir (LPV) and darunavir (DRV) was measured using a single-cycle replication assay. Western blotting was used to analyze Gag cleavage. In one of six participants (subtype CRF02_AG), we found 4-fold-lower LPV susceptibility in viral clones during failure of second-line treatment. A combination of four mutations (S126del, H127del, T122A, and G123E) in the p17 matrix of baseline virus generated a similar 4-fold decrease in susceptibility to LPV but not darunavir. These four amino acid changes were also able to confer LPV resistance to a subtype B Gag-protease backbone. Western blotting demonstrated significant Gag cleavage differences between sensitive and resistant isolates in the presence of drug. Resistant viruses had around 2-fold-lower infectivity than sensitive clones in the absence of drug. NGS combined with haplotype reconstruction revealed that resistant, less fit clones emerged from a minority population at baseline and thereafter persisted alongside sensitive fitter viruses. We used a multipronged genotypic and phenotypic approach to document emergence and temporal dynamics of a novel protease inhibitor resistance signature in HIV-1 matrix, revealing the interplay between Gag-associated resistance and fitness

    High prevalence of integrase mutation L74I in West African HIV-1 subtypes prior to integrase inhibitor treatment.

    Get PDF
    OBJECTIVES: HIV-1 integrase inhibitors are recommended as first-line therapy by WHO, though efficacy and resistance data for non-B subtypes are limited. Two recent trials have identified the integrase L74I mutation to be associated with integrase inhibitor treatment failure in HIV-1 non-B subtypes. We sought to define the prevalence of integrase resistance mutations, including L74I, in West Africa. METHODS: We studied a Nigerian cohort of recipients prior to and during receipt of second-line PI-based therapy, who were integrase inhibitor-naive. Illumina next-generation sequencing with target enrichment was used on stored plasma samples. Drug resistance was interpreted using the Stanford Resistance Database and the IAS-USA 2019 mutation lists. RESULTS: Of 115 individuals, 59.1% harboured CRF02_AG HIV-1 and 40.9% harboured subtype G HIV-1. Four participants had major IAS-USA integrase resistance-associated mutations detected at low levels (2%-5% frequency). Two had Q148K minority variants and two had R263K (one of whom also had L74I). L74I was detected in plasma samples at over 2% frequency in 40% (46/115). Twelve (26.1%) had low-level minority variants of between 2% and 20% of the viral population sampled. The remaining 34 (73.9%) had L74I present at >20% frequency. L74I was more common among those with subtype G infection (55.3%, 26/47) than those with CRF02_AG infection (29.4%, 20/68) (P = 0.005). CONCLUSIONS: HIV-1 subtypes circulating in West Africa appear to have very low prevalence of major integrase mutations, but significant prevalence of L74I. A combination of in vitro and clinical studies is warranted to understand the potential implications.K.E.B. is supported by Wellcome Trust award number 170461. N.N. is supported by NIH R01 AI147331-01. R.K.G. is supported by a Wellcome Trust Senior Fellowship in Clinical Science (WT108082AIA). This study was supported by the President’s Emergency Plan for AIDS Relief (PEPFAR) through the Centers for Disease Control and Prevention (CDC) under the terms of U2G GH002099-01 and PA GH17-1753 (ACHIEVE)

    SARS-CoV-2 B.1.617 mutations L452 and E484Q are not synergistic for antibody evasion

    Get PDF
    SARS-CoV-2 B.1.617系統(俗称「インド株」)のL452R変異とE484Q変異は 中和抗体感受性の低下において、相加的な抵抗性を示さない. 京都大学プレスリリース. 2021-08-24.The SARS-CoV-2 B.1.617 variant emerged in the Indian state of Maharashtra in late 2020. There have been fears that two key mutations seen in the receptor binding domain L452R and E484Q would have additive effects on evasion of neutralising antibodies. We report that spike bearing L452R and E484Q confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies following either first or second dose. The effect is similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. These data demonstrate reduced sensitivity to vaccine elicited neutralising antibodies by L452R and E484Q but lack of synergistic loss of sensitivity

    SARS-CoV-2 evolution during treatment of chronic infection

    Get PDF
    SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE21, and is a major 54 antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising 55 antibodies in an immune suppressed individual treated with convalescent plasma, generating 56 whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was 57 observed in the overall viral population structure following two courses of remdesivir over the 58 first 57 days. However, following convalescent plasma therapy we observed large, dynamic 59 virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and 60 H69/V70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred 61 serum antibodies diminished, viruses with the escape genotype diminished in frequency, before 62 returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape 63 double mutant bearing H69/V70 and D796H conferred modestly decreased sensitivity to 64 convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be 65 the main contributor to decreased susceptibility but incurred an infectivity defect. The 66 H69/V70 single mutant had two-fold higher infectivity compared to wild type, possibly 67 compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS68 CoV-2 during convalescent plasma therapy associated with emergence of viral variants with 69 evidence of reduced susceptibility to neutralising antibodies.COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute

    Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7

    Get PDF
    We report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike ΔH69/V70 in multiple independent lineages, often occurring after acquisition of receptor binding motif replacements such as N439K and Y453F, known to increase binding affinity to the ACE2 receptor and confer antibody escape. In vitro, we show that, although ΔH69/V70 itself is not an antibody evasion mechanism, it increases infectivity associated with enhanced incorporation of cleaved spike into virions. ΔH69/V70 is able to partially rescue infectivity of spike proteins that have acquired N439K and Y453F escape mutations by increased spike incorporation. In addition, replacement of the H69 and V70 residues in the Alpha variant B.1.1.7 spike (where ΔH69/V70 occurs naturally) impairs spike incorporation and entry efficiency of the B.1.1.7 spike pseudotyped virus. Alpha variant B.1.1.7 spike mediates faster kinetics of cell-cell fusion than wild-type Wuhan-1 D614G, dependent on ΔH69/V70. Therefore, as ΔH69/V70 compensates for immune escape mutations that impair infectivity, continued surveillance for deletions with functional effects is warranted

    Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7

    Get PDF
    We report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike ΔH69/V70 in multiple independent lineages, often occurring after acquisition of receptor binding motif replacements such as N439K and Y453F, known to increase binding affinity to the ACE2 receptor and confer antibody escape. In vitro, we show that, although ΔH69/V70 itself is not an antibody evasion mechanism, it increases infectivity associated with enhanced incorporation of cleaved spike into virions. ΔH69/V70 is able to partially rescue infectivity of spike proteins that have acquired N439K and Y453F escape mutations by increased spike incorporation. In addition, replacement of the H69 and V70 residues in the Alpha variant B.1.1.7 spike (where ΔH69/V70 occurs naturally) impairs spike incorporation and entry efficiency of the B.1.1.7 spike pseudotyped virus. Alpha variant B.1.1.7 spike mediates faster kinetics of cell-cell fusion than wild-type Wuhan-1 D614G, dependent on ΔH69/V70. Therefore, as ΔH69/V70 compensates for immune escape mutations that impair infectivity, continued surveillance for deletions with functional effects is warranted

    Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies

    Get PDF
    SARS-CoV-2 transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant1 now reported in 94 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b22. We measured neutralising antibody responses following first and second immunisations using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the RBM (5 out of 31), but not in RBD neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect a newly emergent Variant of Concern (VOC 202102/02) led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b
    corecore